Prof. Bernd Finkbeiner, Ph.D. Martin Zimmermann, Ph.D. Leander Tentrup, B.Sc. Summer term 2013 Problem Set 19 October 4, 2013

## Verification

## Problem 1: Theories / Nelson-Oppen [4 Points]

For the formula

 $1 \le x \land x \le 2 \land \cos(1, y) \ne \cos(x, y) \land \cos(2, y) \ne \cos(x, y),$ 

identify the combination of theories in which it lies. To avoid ambiguity, prefer  $T_{\mathbb{Z}}$  to  $T_{\mathbb{Q}}$ . Then apply the Nelson-Oppen method and then use the appropriate decision procedures for the resulting formulas.

## Problem 2: Theories / Nelson-Oppen [2 Points]

For the formula

$$a[i] \ge 1 \land a[i] + x \le 2 \land x > 0 \land x = i \land a \langle x \triangleleft 2 \rangle [i] \neq 1,$$

identify the combination of theories in which it lies. To avoid ambiguity, prefer  $T_{\mathbb{Z}}$  to  $T_{\mathbb{Q}}$ . Then apply the Nelson-Oppen method and argue informally whether the resulting formulas are satisfiable.

The following exercises belong to the afternoon session.

## Problem 3: True or False [0 Points]

- 1. AX AG  $p \equiv \text{AG AX } p$
- 2. EX EG  $p \equiv {\rm EG} \, {\rm EX} \, p$
- 3. AF AG p can be expressed in LTL.
- 4. If  $\Phi$  is a CTL formula and  $\psi$  is an LTL formula such that  $\Phi \equiv \psi$ , then  $\neg \Phi \equiv \neg \psi$ .
- 5.  $s \models \mathsf{EF} \mathsf{EG} p$  iff there is a path  $\pi$  from s with  $\pi \models \mathsf{F} \mathsf{G} p$ .
- 6.  $s \models \mathsf{EG} \mathsf{EF} p$  iff there is a path  $\pi$  from s with  $\pi \models \mathsf{GF} p$ .
- 7. Let TS be a transition system and  $\Phi$  a CTL formula. If TS does not satisfy  $\neg \Phi$ , then TS satisfies  $\Phi$ .

8. Let  $s_1, s_2$  be states of a transition system and let

$$\Phi = \mathsf{E}\left(a \,\mathsf{U}\left(\mathsf{EX}\,b \wedge \mathsf{EX}\,c\right)\right).$$

If  $s_1 \models \Phi$  and not  $s_2 \models \Phi$  then  $Traces(s_1) \neq Traces(s_2)$ .

- 9. CTL\* equivalence is strictly finer than CTL equivalence.
- 10. LTL equivalence is strictly finer than CTL equivalence.
- 11. CTL equivalence is strictly finer than LTL equivalence.
- 12. If  $s \models \mathsf{AF} p$  then  $s \models_{fair} \mathsf{AF} p$ .
- 13. If  $s \models \mathsf{EF} p$  then  $s \models_{fair} \mathsf{EF} p$ .
- 14.  $s \models_{fair} \mathsf{E}(a \cup b)$  iff  $s \models \mathsf{E}(a \cup (b \land \mathsf{EG} true))$
- 15.  $s \models_{fair} \mathsf{E}(a \cup b)$  iff  $s \models \mathsf{E}(a \cup (b \land a_{fair}))$  where  $a_{fair}$  is an atomic proposition with  $s \models a_{fair}$  iff  $s \models_{fair} \mathsf{EG}$  true.
- 16. For each Büchi automaton A there is an LTL formula  $\varphi$  such that  $Words(\varphi)$  is the language of A.
- 17. If two states  $s_1$  an  $s_2$  in a finite transition system satisfy the same  $CTL_{\subseteq U}$  formulas, then  $s_1$  and  $s_2$  are bisimilar.
- 18. Bisimilar transition systems are simulation equivalent.
- 19. The following two transition systems are stutter-trace equivalent.



- 20. Let  $TS_1$  and  $TS_2$  be two stutter-bisimilar transition systems and let  $\varphi$  be an LTL formula without Next then either both  $TS_1$  and  $TS_2$  satisfy  $\varphi$  or neither satisfies  $\varphi$ .
- 21. The following two transition systems are divergence-sensitive stutter-bisimilar.



22. For every boolean function there is a variable ordering such that the size of the ROBDD is polynomial.

- 23. For every boolean function there is a variable ordering such that the size of the ROBDD is exponential.
- 24. The following timed automaton satisfies EF on:

$$\begin{array}{c} \{x\} \quad y \leq 9 \\ \hline \\ \bullet \\ x \geq 2 \end{array}$$

- 25. Each nonzeno timed automaton is timelock-free.
- 26. The state graph and the region graph of a timed automaton are bisimilar over AP'.
- 27. Clock equivalence is a bisimulation.
- 28. If there is a P-inductive program annotation, then P is partially correct.
- 29. It holds that

$$wp(F, \texttt{assume } c) = F \wedge c$$

30.

$$f(a) = f(b) \to a = b$$

is  $T_E$ -satisfiable.

31.  $T_E$  is decidable.

32.

$$a[i] = e \ \rightarrow \ a\langle i \triangleleft e \rangle = a$$

is  $T_{\mathsf{A}}$ -valid.

- 33. The quantifier-free fragment of the theory of arrays with extensionality is decidable.
- 34. The limitations of the Nelson-Oppen method are as follows:

Given formula F in theory  $T_1 \cup T_2$ .

- a) F must be quantifier-free.
- b) Signatures  $\Sigma_i$  of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

and both must contain the axioms of the theory of equality.

- c) Theories must be stably infinite.
- d) Theories  $T_1, T_2$  must be <u>convex</u>.