Prof. Bernd Finkbeiner, Ph.D. Martin Zimmermann, Ph.D. Leander Tentrup, B.Sc. Summer term 2013 Problem Set 16 September 30, 2013

Verification

Tool: πVC

You should use the tool πVC to solve the problems of this set. A modified version of the tool for this lecture is available from the lecture website. In order to run it, run the command java -jar PiGui.jar. πVC is also installed on our virtual machine, it can be started from the quick lunch bar. You will need an internet connection to successfully compile and verify programs.

Hint 1: The small window on the bottom right might be to small to see all the contents on a small screen. It does not have scoll bars, but it is scrollable to ensure your access to the vital information which properties are proven and which are not.

Hint 2: If you get stuck with the proof you can ask us for some additional hints.

Problem 1: Abs [4 Points]

Prove total correctness of the program Abs using πVC , i.e. annotate the function with an inductive loop invariant and give a ranking annotation. You can download the file Abs.pi from the lecture website.

Figure 1: Computing the absolute values of an array

The following exercises belong to the afternoon session.

Problem 2: Insertion Sort [8 Points]

Prove total correctness of the program InsertionSort using πVC , i.e. annotate the function with inductive loop invariants and give ranking annotations. You can download the file InsertionSort.pi from the lecture website.

```
@pre \top
(\text{opost sorted}(rv, 0, |rv| - 1))
int[] InsertionSort(int[] a_0) {
  int[] a := a_0;
  for @\top
     (int i := 1; i < |a|; i := i + 1) {
     int t := a[i];
     for @ \top
        (int \ j := i - 1; \ j \ge 0; \ j := j - 1) {
        \texttt{if} \ (a[j] \leq t) \texttt{ break};
        a[j+1] := a[j];
     }
     a[j+1] := t;
  }
  return a;
}
```

