Verification

Problem 1: Weakest precondition [4 Points]

Compute the following formulae:

1. $\operatorname{wp}(x \geq 0, x:=x-k ;$ assume $k \leq 1)$
2. $\operatorname{wp}(x \geq 0$, assume $k \leq x ; x:=x-k)$
3. $\operatorname{wp}(x \geq 0, x:=x-k ;$ assume $k \leq x)$
4. $\operatorname{wp}(x+2 y \geq 3, x:=x+1 ;$ assume $x>0 ; y:=y+x)$

Problem 2: Factorial [4 Points]

Prove the partial correctness of fact. Annotate the function with an inductive loop invariant; visualize the basic paths in a diagram; list the basic paths and corresponding verification conditions and prove that all verification conditions are valid.

```
@pre \(n \geq 0\)
@post \(r v=n\) !
int fact(int \(n\) ) \{
    int \(f:=1\);
    for
        @ T
        (int \(i:=1 ; i \leq n ; i:=i+1)\{\)
        \(f:=f * i ;\)
    \}
    return \(f\);
\}
```

Figure 1: Computing the factorial of n

The following exercises belong to the afternoon session.

Problem 3: Absolute values [6 Points]

Prove the total correctness of abs. Annotate the function with an inductive loop invariant; visualize the basic paths in a diagram; list the basic paths and corresponding verification conditions and prove that all verification conditions are valid. Furthermore, give a ranking function to prove termination.

```
@pre T
@post }\foralli.0\leqi<|rv| ->rv[i]\geq
int[] abs(int[] a ) {
    int[] }a:=\mp@subsup{a}{0}{}
    for
        @ T
        (int i:= 0; i< |a|;i:= i+1) {
        if (a[i]<0) {
            a[i]:= - a[i];
        }
    }
    return a;
}
```

Figure 2: Computing the absolute values of an array

