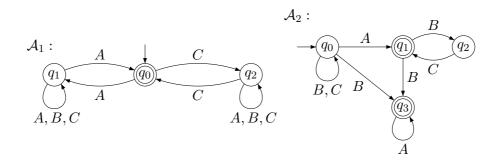
Verification

Problem 1: Büchi Automata [4 Points]

Find nondeterministic Büchi automata that accept the following ω -regular languages:

- 1. $L_1 = \{ \sigma \in \{A, B\}^{\omega} \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often} \}$
- 2. $L_2 = \mathcal{L}_{\omega} ((AB + C)^* ((AA + B)C)^{\omega} + (A^*C)^{\omega})$


Problem 2: Deterministic Büchi Automata [2 Points]

Show that the class of languages accepted by DBA is not closed under complementation.

The following exercises belong to the afternoon session.

Problem 3: NBA and ω -regular expressions [4 Points]

Consider the following NBA A_1 and A_2 over the alphabet $\Sigma = \{A, B, C\}$:

Find ω -regular expressions for the languages accepted by \mathcal{A}_1 and \mathcal{A}_2 , respectively.

Problem 4: ω -regular expressions [4 Points]

Are the following languages described by ω -regular expressions equivalent? Justify your answer!

(a)
$$E.(F_1 + F_2)^{\omega} \equiv E.F_1^{\omega} + E.F_2^{\omega}$$

(b)
$$(E^*.F)^{\omega} \equiv E^*.F^{\omega}$$

Here, E, F, F_1, F_2 denote regular expressions with $\varepsilon \notin \mathcal{L}(F) \cup \mathcal{L}(F_1) \cup \mathcal{L}(F_2)$.