Verification

Problem 1: VIS and Verilog warm-up [2 Points]

In the following exercises we are going to use the hardware verification tool VIS. Install the latest version of VIS (http://vlsi.colorado.edu/~vis/) or use the Virtual Machine provided on the course website. Consider the following Verilog program (also available on the course website):

```
module x (a, b, c);
    input a;
    input b;
    output c;
    wire a;
    wire b;
    reg [2:0] c;
    initial begin
        c = 0;
    end
```

 always @(posedge a) begin
 if (b)
 \(c=c+3 ;\)
 else
 \(\mathrm{c}=\mathrm{c}\);
 end
 endmodule

1. Describe what the progam does. [1 Point]
2. Give an example output for a simulation run with 5 steps. [1 Point]

Problem 2: Counters [3 Points]

1. Write the Verilog description of an 2-Bit Counter with an additional reset flag. Whenever the reset flag is set, the next configuration must output $\langle 00\rangle_{2}$. [1 Point]
2. Write the Verilog description of an 8-Bit Counter:
a) Using four 2-Bit Counter as submodules [1 Point]
b) Without using submodules [1 Point]

The following exercises belong to the afternoon session.

Problem 3: CTL warm-up [3 Points]

Express the following properties as CTL formulas over $A P=\{a, b, c\}$ and provide a justification. For more complicated formulas, also comment on their subformulas!

1. There exists a path on which the following holds for every state s : there exists a path which starts in s, and on which eventually a holds and in the next state, $\neg a$ holds. [1 Point]
2. There exists a reachable state s for which the following holds: a is true and on all paths starting from s, c holds as long as b does not hold. [1 Point]
3. On every path the following holds for every state: a is valid if and only if b is valid and in the previous state, c is valid. [1 Point]

Problem 4: CTL Semantics [4 Points]

Prove or disprove the following implications:

1. Let $\Phi_{1}=\mathrm{AF} a \vee \mathrm{AF} b$ and $\Phi_{2}=\mathrm{AF}(a \vee b)$.

Prove or disprove $\Phi_{1} \rightarrow \Phi_{2}$ and $\Phi_{2} \rightarrow \Phi_{1}$. [2 Points]
2. Now consider $\Psi_{1}=\mathrm{E}(a \cup \mathrm{E}(b \cup c))$ and $\Psi_{2}=\mathrm{E}(\mathrm{E}(a \cup b) \cup c)$.

Again, prove or disprove $\Psi_{1} \rightarrow \Psi_{2}$ and $\Psi_{2} \rightarrow \Psi_{1}$. [2 Points]

