Prof. Bernd Finkbeiner, Ph.D. Peter Faymonville, M.Sc. Michael Gerke, B.Sc. Winter term 2011/2012 Problem Set 3

Verification

Please write the names of all group members on the solutions you hand in.

Problem 1

Find nondeterministic Büchi automata that accept the following ω -regular languages:

- 1. $L_1 = \{ \sigma \in \{A, B\}^{\omega} \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often} \}$
- 2. $L_2 = \mathcal{L}_{\omega} \left((AB + C)^* ((AA + B)C)^{\omega} + (A^*C)^{\omega} \right)$

Problem 2

Consider the following NBA \mathcal{A}_1 and \mathcal{A}_2 over the alphabet $\Sigma = \{A, B, C\}$:

Find ω -regular expressions for the languages accepted by \mathcal{A}_1 and \mathcal{A}_2 , respectively.

Problem 3

Are the following languages described by ω -regular expressions equivalent? Justify your answer!

- (a) $E.(F_1 + F_2)^{\omega} \equiv E.F_1^{\omega} + E.F_2^{\omega}$
- (b) $(E^*.F)^\omega \equiv E^*.F^\omega$

Here, E, F, F_1, F_2 denote regular expressions with $\varepsilon \notin \mathcal{L}(F) \cup \mathcal{L}(F_1) \cup \mathcal{L}(F_2)$.

Problem 4

Show that the class of languages accepted by DBA is not closed under complementation.