Verification

Please write the names of all group members on the solutions you hand in.

Problem 1

Find nondeterministic Büchi automata that accept the following ω-regular languages:

1. $L_{1}=\left\{\sigma \in\{A, B\}^{\omega} \mid \sigma\right.$ contains $A B A$ infinitely often, but $A A$ only finitely often $\}$
2. $L_{2}=\mathcal{L}_{\omega}\left((A B+C)^{*}((A A+B) C)^{\omega}+\left(A^{*} C\right)^{\omega}\right)$

Problem 2

Consider the following NBA \mathcal{A}_{1} and \mathcal{A}_{2} over the alphabet $\Sigma=\{A, B, C\}$:

Find ω-regular expressions for the languages accepted by \mathcal{A}_{1} and \mathcal{A}_{2}, respectively.

Problem 3

Are the following languages described by ω-regular expressions equivalent? Justify your answer!
(a) $E \cdot\left(F_{1}+F_{2}\right)^{\omega} \equiv E \cdot F_{1}^{\omega}+E \cdot F_{2}^{\omega}$
(b) $\left(E^{*} \cdot F\right)^{\omega} \equiv E^{*} \cdot F^{\omega}$

Here, E, F, F_{1}, F_{2} denote regular expressions with $\varepsilon \notin \mathcal{L}(F) \cup \mathcal{L}\left(F_{1}\right) \cup \mathcal{L}\left(F_{2}\right)$.

Problem 4

Show that the class of languages accepted by DBA is not closed under complementation.

