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REVIEW: The GNBA of LTL-formula φ

For LTL-formula φ, let Gφ = (Q, 2AP, δ,Q0,F)where
▸ Q is the set of all elementary sets of formulas B ⊆ closure(φ)

▸ Q0 = {B ∈ Q ∣ φ ∈ B}
▸ F = {{B ∈ Q ∣ φ1 Uφ2 /∈ B or φ2 ∈ B} ∣ φ1Uφ2 ∈ closure(φ)}
▸ The transition relation δ ∶ Q × 2AP → 2Q is given by:

▸ δ(B, B ∩ AP) is the set of all elementary sets of formulas B′

satisfying:

(i) For every◯ψ ∈ closure(φ):◯ψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every ψ1 Uψ2 ∈ closure(φ):

ψ1 Uψ2 ∈ B ⇔ (ψ2 ∈ B ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B′))



REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a

GNBA Gφ over 2
AP such that:

(a) Words(φ) = Lω(Gφ)
(b) Gφ can be constructed in time and spaceO (2∣φ∣)
(c) #accepting sets of Gφ is bounded above byO(∣φ∣)

⇒ every LTL-formula expresses an ω-regular property!



REVIEW: NBA are more expressive than LTL

There is no LTL formula φ withWords(φ) = P for the LT-property:

P = {A0A1A2 . . . ∈ (2{a})
ω ∣ a ∈ A2i for i ≥ 0}

But there exists an NBAAwith Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!



REVIEW: Complexity for LTL to NBA

For any LTL-formula φ (over AP) there exists an NBAAφ

withWords(φ) = Lω(Aφ) and
which can be constructed in time and space in 2O(∣φ∣)



The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete

[Sistla & Clarke 1985]



Reduction to Hamiltonian Path Problem

▸ Hamiltonian Path for a graph (V , E) passes every vertex exactly
once.

▸ State graph: (V ∪ {b}, E ∪ (V ∪ {b}) × {b},
L(v) = {v} for v ∈ V , L(b) = ∅)

▸ LTL property ‘‘no path is Hamiltonian’’:

¬⋀
v∈V

(◇ v ∧ ◻(v →◯ ◻ ¬v))



PSPACE-hardness

▸ LetM be a polynomial space-bounded Turing machine that

accepts words of a language K (i.e., K is a PSPACE-language)

▸ We construct for each word w a state graph S and an LTL

formula φ such that S ⊧ φ iffw ∈ K .

Single-tape Turing machine (Q, q0, F, Σ, δ)
δ ∶ Q × Σ → Q × Σ × {L, R,N}
L: left, R: right, N: no move

Space-bounded: there is a polynomial P(n) such that the

computation on input word of length n visits at most P(n) tape
cells.



0
begin

⋮ 1 ⋮ 2
. . . ⋮

P(n)

S = {0, 1, . . . , P(n)} ∪ {(q,A, i) ∣ q ∈ Q ∪ {∗},A ∈ Σ, 0 < i ≤ P(n)}

Idea: q ∈ Q identifies current state of Turing machine and current

position of cursor; ∗ everywhere else.



▸ Configuration (Tape content A1, . . . ,AP(n), current state q,

cursor position i)

is encoded as path fragment

0(∗,A1, 1)1(∗,A2, 2)2 . . . i − 1(q,Ai , i)i(∗,Ai+1, i + 1) . . . P(n)
▸ Computation is encoded as a sequence of such fragments.

▸ Legal configurations:

φconf = ◻(begin→ φ1
conf ∧ φ2

conf)
φ1
conf = ⋁1≤i≤P(n)◯ 2i−1ΦQ whereΦQ = ⋁(q,A,i)∈S,q∈Q(q,A, i)

φ2
conf = ⋀1≤i≤P(n)(◯ 2i−1ΦQ → ⋀1≤j≤P(n),j≠i◯ 2j−1¬ΦQ)



Transition function

for δ(q,A) = (p, B, L):

φq,A = ◻ ⋀1≤i≤P(n)(◯ 2i−1(q,A, i)→ ψ(q,A, i, p, B, L))
where

ψ(q,A, i, p, B, L) = ⋀1≤j≤P(n),i≠j,C∈Σ(◯ 2j−1C ↔◯ 2j−1+2P(n)+1C)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

content of all cells ≠ i unchanged

∧ ◯ 2i−1+2P(n)+1B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

overwrite A by B in cell i

∧ ◯ 2i−1+2P(n)+1−2p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

move to state p and cursor to cell i − 1

φδ =⋀
q,A

φq,A [C short for⋁r,j(r, C, j), p short for⋁D,j(p,D, j)]



▸ Starting configuration

φw
start = begin ∧◯q0 ∧⋀1≤i≤n◯ 2i−1Ai ∧⋀n<i≤P(n)◯ 2i−1blank

▸ Accepting configuration

φaccept = ◇ ⋁q∈F q

▸ Full encoding

φw = φconf ∧ φw
start ∧ φδ ∧ φaccept

⇒Model check ¬φw .



PSPACE-completeness

Claim: The LTL model checking problem can be solved by a

nondeterministic polynomial space-bounded algorithm

Idea: Guess, nondeterministically, an accepting run in S × Gφ:

u0u1 . . . un−1(v0v1 . . . vm−1)ω

where n,m ≤ ∣S∣ ⋅ 2∣φ∣
▸ Guess n,m nondeterministically by guessing

⌈log(∣S∣ ⋅ 2∣φ∣)⌉ = O(log(∣S∣) ⋅ ∣φ∣) bits.
▸ Guess the sequence u0u1 . . . un−1un . . . un+m where ni = (si , Bi)
such that

▸ si is a successor of si−1 for i ≥ 1
▸ Bi is elementary
▸ Bi ∩ AP = L(si)
▸ Bi ∈ δ(Bi−1 , L(si−1)) for i ≥ 1.

▸ Check if un = un+m

▸ Check that whenever φ1 Uφ2 ∈ Bi for some i ∈ {n, . . . n +m − 1}
then ∃j ∈ {n, . . . , n +m − 1}with φ2 ∈ Bj



Required space

n +m can be exponential. However, we only need:

▸ pair of states ui−1, ui;

▸ flag which φ1Uφ2 have appeared in loop;

▸ flag which φ2 have appeared;

▸ un

⇒ polynomial space



LTL satisfiability and validity checking

▸ Satisfiability problem:Words(φ) /= ∅ for LTL-formula φ?
▸ does there exist a transition system for which φ holds?

▸ Solution: construct an NBAAφ and check for emptiness
▸ nested depth-first search for checking persistence properties

▸ Validity problem: is φ ≡ true, i.e.,Words(φ) = (2AP)ω?
▸ does φ hold for every transition system?

▸ Solution: as for satisfiability, as φ is valid iff ¬φ is not satisfiable

runtime is exponential;

a more efficient algorithmmost probably does not exist!



LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Idea: Reduce model checking problem of φ to satisfiability problem

by encoding transition system as LTL formula:

ψ = ψI ∧ ◻ψS ∧ ◻ψAP

▸ ψI = ⋁q∈I q

▸ ψS = ⋀q∈S q→◯ ⋁q′∈Post(q) q
′

▸ ψAP = ⋀q∈S q→ ⋀a∈L(q) a ∧⋀a/∈L(q) ¬a

Check satisfiability of ψ ∧ ¬φ.



Summary of LTL model checking (1)

▸ LTL is a logic for formalizing path-based properties

▸ Expansion law allows for rewriting until into local conditions

and next

▸ LTL-formula φ can be transformed algorithmically into NBAAφ

▸ this may cause an exponential blow up
▸ algorithm: first construct a GNBA for φ; then transform it into an

equivalent NBA

▸ LTL-formulae describe ω-regular LT-properties
▸ but do not have the same expressivity as ω-regular languages



Summary of LTL model checking (2)

▸ TS ⊧ φ can be solved by a nested depth-first search in TS⊗A¬φ

▸ time complexity of the LTL model-checking algorithm is linear

in TS and exponential in ∣φ∣
▸ Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible

to the standard LTL model-checking problem

▸ The LTL-model checking problem is PSPACE-complete

▸ Satisfiability and validity of LTL amounts to NBA

emptiness-check

▸ The satisfiability and validitiy problems for LTL are

PSPACE-complete



Linear and branching temporal logic

▸ Linear temporal logic:

‘‘statements about (all) paths starting in a state’’

▸ s ⊧ ◻ (x ≤ 20) iff for all possible paths starting in s always x ≤ 20

▸ Branching temporal logic:

‘‘statements about all or some paths starting in a state’’

▸ s ⊧ AG (x ≤ 20) iff for all paths starting in s always x ≤ 20
▸ s ⊧ EG (x ≤ 20) iff for some path starting in s always x ≤ 20
▸ nesting of path quantifiers is allowed

▸ Checking Eφ in LTL can be done using A¬φ
▸ . . . but this does not work for nested formulas such as AGEFa



Linear versus branching temporal logic

▸ Semantics is based on a branching notion of time
▸ an infinite tree of states obtained by unfolding transition system
▸ one ‘‘time instant’’ may have several possible successor ‘‘time

instants’’

▸ Incomparable expressiveness
▸ there are properties that can be expressed in LTL, but not in CTL
▸ there are properties that can be expressed in CTL, but not in LTL

▸ Distinct model checking algorithms, and their time

complexities

▸ Distinct treatment of fairness assumptions

▸ Distinct equivalences (pre-orders) on transition systems
▸ that correspond to logical equivalence in LTL and branching

temporal logics



Transition systems and trees

s0

s2s3 { x = 0}

{ x = 0}

{ x ≠ 0}

{ x = 1, x ≠ 0}

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1



‘‘behavior’’ path-based: state-based:

in a state s trace(s) computation tree of s

temporal LTL: path formulas φ CTL: state formulas

logic s ⊧ φ iff existential path quantification ∃φ
∀π ∈ Paths(s). π ⊧ φ universal path quantification: ∀φ

complexity of the PSPACE--complete PTIME

model checking

problems O(∣TS∣ ⋅ 2∣φ∣) O (∣TS∣ ⋅ ∣Φ∣)

implementation- trace inclusion and the like simulation and bisimulation

relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques special techniques needed



Branching temporal logics

There are various branching temporal logics:

▸ Hennessy-Milner logic

▸ Computation Tree Logic (CTL)

▸ Extended Computation Tree Logic (CTL∗)
▸ combines LTL and CTL into a single framework

▸ Alternation-free modal µ-calculus

▸ Modal µ-calculus

▸ Propositional dynamic logic



Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

▸ Statements over states
▸ a ∈ AP atomic proposition
▸ ¬Φ andΦ ∧ Ψ negation and conjunction
▸ Eφ there exists a path fulfilling φ
▸ Aφ all paths fulfill φ

▸ Statements over paths
▸ XΦ the next state fulfillsΦ
▸ ΦUΨ Φ holds until a Ψ-state is reached

⇒ note that X and U alternate with A and E
▸ AXXΦ and AEX Φ /∈ CTL, but AXAX Φ and AXEX Φ ∈ CTL

Alternative syntax: E ≈ ∃, A ≈ ∀, X ≈◯ , G ≈ ◻ , F ≈◇ .



Derived operators

potentiallyΦ: E FΦ = E (trueUΦ)

inevitablyΦ: A FΦ = A (trueUΦ)

potentially alwaysΦ: EGΦ ∶= ¬AF¬Φ

invariantlyΦ: AGΦ = ¬E F¬Φ

weak until: E (ΦWΨ) = ¬A ((Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ))

A (ΦWΨ) = ¬E ((Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ))

the boolean connectives are derived as usual



Visualization of semantics

AF red A (yellowU red)

E (yellowU red)EG red

AG red

EF red



Semantics of CTL state-formulas

Defined by a relation ⊧ such that

s ⊧ Φ if and only if formulaΦ holds in state s

s ⊧ a iff a ∈ L(s)
s ⊧ ¬Φ iff ¬ (s ⊧ Φ)

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) ∧ (s ⊧ Ψ)

s ⊧ Eφ iff π ⊧ φ for some path π that starts in s

s ⊧ Aφ iff π ⊧ φ for all paths π that start in s



Semantics of CTL path-formulas

Defined by a relation ⊧ such that

π ⊧ φ if and only if path π satisfies φ

π ⊧ XΦ iff π[1] ⊧ Φ

π ⊧ ΦUΨ iff (∃ j ≥ 0. π[j] ⊧ Ψ ∧ (∀0 ≤ k < j. π[k] ⊧ Φ))

where π[i] denotes the state si in the path π



Transition system semantics

▸ For CTL-state-formulaΦ, the satisfaction set Sat(Φ) is defined
by:

Sat(Φ) = { s ∈ S ∣ s ⊧ Φ }
▸ TS satisfies CTL-formulaΦ iffΦ holds in all its initial states:

TS ⊧ Φ if and only if ∀s0 ∈ I. s0 ⊧ Φ

▸ this is equivalent to I ⊆ Sat(Φ)
▸ Point of attention: TS /⊧ Φ and TS /⊧ ¬Φ is possible!

▸ because of several initial states, e.g. s0 ⊧ EGΦ and s′0 /⊧ EGΦ



CTL equivalence

CTL-formulasΦ and Ψ (over AP) are equivalent, denotedΦ ≡ Ψ
if and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP

Φ ≡ Ψ iff (TS ⊧ Φ if and only if TS ⊧ Ψ)



Duality laws

AXΦ ≡ ¬EX¬Φ

EXΦ ≡ ¬AX¬Φ

AFΦ ≡ ¬EG¬Φ

E FΦ ≡ ¬AG¬Φ

A (ΦUΨ) ≡ ¬E ((Φ ∧ ¬Ψ)W (¬Φ ∧ ¬Ψ))



Expansion laws

Recall in LTL: φUψ ≡ ψ ∨ (φ ∧ X (φUψ))

In CTL:
A (ΦUΨ) ≡ Ψ ∨ (Φ ∧ AXA (ΦUΨ))

AFΦ ≡ Φ ∨ AXAFΦ

AGΦ ≡ Φ ∧ AXAGΦ

E (ΦUΨ) ≡ Ψ ∨ (Φ ∧ EXE (ΦUΨ))
E FΦ ≡ Φ ∨ EXEFΦ

EGΦ ≡ Φ ∧ EXEGΦ



Distributive laws

Recall in LTL:
G (φ ∧ ψ) ≡ Gφ ∧ Gψ

F (φ ∨ ψ) ≡ Fφ ∨ Fψ

In CTL:
AG (Φ ∧ Ψ) ≡ AGΦ ∧ AGΨ

E F (Φ ∨Ψ) ≡ E FΦ ∨ E FΨ

note that EG (Φ ∧ Ψ) /≡ EGΦ ∧ EGΨ and AF (Φ ∨ Ψ) /≡ AFΦ ∨ AFΨ



Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ∶∶= true ∣ a ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ EXΦ ∣ E (Φ1 UΦ2) ∣ EGΦ

For each CTL formula, there exists an equivalent CTL formula in ENF

AXΦ ≡ ¬EX¬Φ

A (ΦUΨ) ≡ ¬E (¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ



Model checking CTL

▸ How to check whether state graph TS satisfies CTL formula Φ̂?
▸ convert the formula Φ̂ into the equivalentΦ in ENF
▸ compute recursively the set Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }
▸ TS ⊧ Φ if and only if each initial state of TS belongs to Sat(Φ)

▸ Recursive bottom-up computation of Sat(Φ):
▸ consider the parse-tree ofΦ
▸ start to compute Sat(ai), for all leafs in the tree
▸ then go one level up in the tree and determine Sat(⋅) for these
nodes

e.g.,: Sat(Ψ1 ∧ Ψ2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
node at level i

) = Sat( Ψ1¯
node at
level i−1

) ∩ Sat( Ψ2¯
node at
level i−1

)

▸ then go one level up and determine Sat(⋅) of these nodes
▸ and so on....... until the root is treated, i.e., Sat(Φ) is computed



Example

∧ Sat(Φ)

EXSat(Ψ) EU Sat(Ψ′)

a

b EG Sat(Ψ′′)

¬

c

Φ = EXa±
Ψ

∧ E (bU EG¬c)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

Ψ′′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ψ′

.



Basic algorithm

Require: finite transition system TSwith states S and initial states I, and

CTL formulaΦ (both over AP)

Ensure: TS ⊧ Φ

{compute the sets Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }}
for all i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

compute Sat(Ψ) from Sat(Ψ′) {for maximal proper Ψ′ ∈ Sub(Ψ)}
end for

end for

return I ⊆ Sat(Φ)



Characterization of Sat (1)

For all CTL formulasΦ, Ψ over AP it holds:

Sat(true) = S

Sat(a) = {q ∈ S ∣ a ∈ L(q) }, for any a ∈ AP
Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S ∖ Sat(Φ)
Sat(EXΦ) = {q ∈ S ∣ Post(q) ∩ Sat(Φ) /= ∅}

for a given finite transition system with states S



Characterization of Sat (2)

▸ Sat(E (ΦUΨ)) is the smallest subset T of S, such that:

(1)Sat(Ψ) ⊆ T and (2) (q ∈ Sat(Φ) and Post(q) ∩ T ≠ ∅) ⇒ q ∈ T

▸ Sat(EGΦ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and (4) q ∈ T implies Post(q) ∩ T /= ∅



Computing Sat(E (ΦUΨ)) (1)

▸ Sat(E (ΦUΨ)) is the smallest set T ⊆ Q such that:

(1)Sat(Ψ) ⊆ T and (2) (q ∈ Sat(Φ) and Post(q) ∩ T ≠ ∅) ⇒ q ∈ T

▸ This suggests to compute Sat(E (ΦUΨ)) iteratively:
T0 = Sat(Ψ) and Ti+1 = Ti ∪ {q ∈ Sat(Φ) ∣ Post(q) ∩ Ti /= ∅}

▸ Ti = states that can reach a Ψ-state in at most i steps via a

Φ-path

▸ By induction on j it follows:

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . . ⊆ Sat(E (ΦUΨ))



Computing Sat(E (ΦUΨ)) (2)

▸ TS is finite, so for some j ≥ 0 we have: Tj = Tj+1 = Tj+2 = . . .

▸ Therefore: Tj = Tj ∪ {q ∈ Sat(Φ) ∣ Post(q) ∩ Tj /= ∅}
▸ Hence: {q ∈ Sat(Φ) ∣ Post(q) ∩ Tj /= ∅} ⊆ Tj

▸ hence, Tj satisfies (2), i.e.,

(q ∈ Sat(Φ) and Post(q) ∩ Tj ≠ ∅) ⇒ q ∈ Tj
▸ further, Sat(Ψ) = T0 ⊆ Tj so, Tj satisfies (1), i.e. Sat(Ψ) ⊆ Tj

▸ As Sat(E (ΦUΨ)) is the smallest set satisfying (1) and (2):
▸ Sat(E (ΦUΨ)) ⊆ Tj and thus Sat(E (ΦUΨ)) = Tj

▸ Hence: T0 ⫋ T1 ⫋ T2 ⫋ . . . ⫋ Tj = Tj+1 = . . . = Sat(E (ΦUΨ))



Computing Sat(E (ΦUΨ)) (3)

Require: finite transition system with states S CTL-formula E (ΦUΨ)
Ensure: Sat(E (ΦUΨ)) = {q ∈ S ∣ q ⊧ E (ΦUΨ) }

V ∶= Sat(Ψ); {V administers states qwith q ⊧ E (ΦUΨ)}
T ∶= V ; {T contains the already visited states qwith q ⊧ E (ΦUΨ)}
while V /= ∅ do

let q′ ∈ V ;
V ∶= V ∖ {q′ };
for all q ∈ Pre(q′) do

if q ∈ Sat(Φ) ∖ T then V ∶= V ∪ {q}; T ∶= T ∪ {q}; endif
end for

end while

return T



Computing Sat(EGΦ)

V ∶= S ∖ Sat(Φ); {V contains any not visited q′ with q′ /⊧ EGΦ}

T ∶= Sat(Φ); {T contains any q for which q ⊧ EGΦ has not yet been disproven}

for all q ∈ Sat(Φ) do c[q] ∶= ∣Post(q) ∣; od {initialize array c}

while V ≠ ∅ do

{loop invariant: c[q] = ∣Post(q) ∩ (T ∪ V) ∣}
let q′ ∈ V ; {q′ /⊧ Φ}

V ∶= V ∖ {q′ }; {q′ has been considered}

for all q ∈ Pre(q′) do
if q ∈ T then

c[q] ∶= c[q] − 1; {update counter c[q] for predecessor q of q′}
if c[q] = 0 then

T ∶= T ∖ {q}; V ∶= V ∪ {q}; {q does not have any successor in T}

end if

end if

end for

end while

return T



Alternative algorithm for Sat(EGΦ)

1. Consider only state q if q ⊧ Φ, otherwise eliminate q
▸ change states to S′ = Sat(Φ),
⇒ all removed states will not satisfy EGΦ, and thus can be safely

removed

2. Determine all non-trivial strongly connected components in
TS[Φ]

▸ non-trivial SCC = maximal, connected subgraph with at least

one edge

⇒ any state in such SCC satisfies EGΦ

3. q ⊧ EGΦ is equivalent to ‘‘some SCC is reachable from q’’
▸ this search can be done in a backward manner


