Verification

Lecture 9

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Overview of LTL model checking

REVIEW: The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- Q is the set of all elementary sets of formulas $B \subseteq closure(\varphi)$ • $Q_0 = \{ B \in Q \mid \varphi \in B \}$
- $\succ \mathcal{F} = \left\{ \left\{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \right\} \mid \varphi_1 \cup \varphi_2 \in closure(\varphi) \right\}$
- The transition relation $\delta : Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\psi_1 \cup \psi_2 \in closure(\varphi)$:

$$\psi_1 \cup \psi_2 \in B \iff \left(\psi_2 \in B \lor (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')\right)$$

REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over *AP*) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that: (a) *Words*(φ) = $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$

(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$

(c) #accepting sets of \mathcal{G}_{arphi} is bounded above by $\mathcal{O}(|arphi|)$

 \Rightarrow every LTL-formula expresses an ω -regular property!

REVIEW: NBA are more expressive than LTL

There is no LTL formula φ with $Words(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{\left\{ a \right\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \ge 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{P}$

 \Rightarrow there are ω -regular properties that cannot be expressed in LTL!

REVIEW: Complexity for LTL to NBA

For any LTL-formula φ (over *AP*) there exists an NBA \mathcal{A}_{φ} with $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ and which can be constructed in time and space in $2^{\mathcal{O}(|\varphi|)}$

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete

[Sistla & Clarke 1985]

Reduction to Hamiltonian Path Problem

- Hamiltonian Path for a graph (V, E) passes every vertex exactly once.
- State graph: $(V \cup \{b\}, E \cup (V \cup \{b\}) \times \{b\}, L(v) = \{v\}$ for $v \in V, L(b) = \emptyset$)
- LTL property "no path is Hamiltonian":

$$\neg \bigwedge_{v \in V} (\diamondsuit v \land \Box (v \to \bigcirc \Box \neg v))$$

PSPACE-hardness

- Let M be a polynomial space-bounded Turing machine that accepts words of a language K (i.e., K is a PSPACE-language)
- We construct for each word w a state graph S and an LTL formula φ such that $S \vDash \varphi$ iff $w \in K$.

Single-tape Turing machine $(Q, q_0, F, \Sigma, \delta)$ $\delta : Q \times \Sigma \rightarrow Q \times \Sigma \times \{L, R, N\}$ *L*: left, *R*: right, *N*: no move

Space-bounded: there is a polynomial P(n) such that the computation on input word of length n visits at most P(n) tape cells.

$$S = \{0, 1, ..., P(n)\} \cup \{(q, A, i) \mid q \in Q \cup \{*\}, A \in \Sigma, 0 < i \le P(n)\}$$

Idea: $q \in Q$ identifies current state of Turing machine and current position of cursor; * everywhere else.

- Configuration (Tape content A₁,..., A_{P(n)}, current state q, cursor position i)
 is encoded as path fragment
 0(*,A₁, 1)1(*,A₂, 2)2...i 1(q, A_i, i)i(*, A_{i+1}, i + 1)...P(n)
- Computation is encoded as a sequence of such fragments.
- Legal configurations:

$$\begin{split} \varphi_{conf} &= \Box \left(begin \to \varphi_{conf}^{1} \land \varphi_{conf}^{2} \right) \\ \varphi_{conf}^{1} &= \bigvee_{1 \le i \le P(n)} \bigcirc^{2i-1} \Phi_{Q} \text{ where } \Phi_{Q} = \bigvee_{(q,A,i) \in S, q \in Q} (q,A,i) \\ \varphi_{conf}^{2} &= \bigwedge_{1 \le i \le P(n)} (\bigcirc^{2i-1} \Phi_{Q} \to \bigwedge_{1 \le j \le P(n), j \ne i} \bigcirc^{2j-1} \neg \Phi_{Q}) \end{split}$$

Transition function

for
$$\delta(q, A) = (p, B, L)$$
:
 $\varphi_{q,A} = \Box \wedge_{1 \le i \le P(n)} (\bigcirc^{2i-1}(q, A, i) \rightarrow \psi(q, A, i, p, B, L))$
where
 $\psi(q, A, i, p, B, L) = \bigwedge_{1 \le j \le P(n), i \ne j, C \in \Sigma} (\bigcirc^{2j-1}C \leftrightarrow \bigcirc^{2j-1+2P(n)+1}C)$
content of all cells $\ne i$ unchanged
 $\wedge \qquad \bigcirc^{2i-1+2P(n)+1}B$
overwrite A by B in cell i
 $\wedge \qquad \bigcirc^{2i-1+2P(n)+1-2}p$
move to state p and cursor to cell $i-1$
 $\varphi_{\delta} = \bigwedge_{q,A} \varphi_{q,A} \qquad [C \text{ short for } \bigvee_{r,j}(r, C, j), p \text{ short for } \bigvee_{D,j}(p, D, j)]$

Starting configuration

 $\varphi_{start}^{w} = begin \land \bigcirc q_0 \land \land_{1 \le i \le n} \bigcirc^{2i-1} A_i \land \land_{n < i \le P(n)} \bigcirc^{2i-1} blank$

- Accepting configuration $\varphi_{accept} = \diamondsuit \bigvee_{a \in F} q$
- Full encoding

 $\varphi_{w} = \varphi_{conf} \land \varphi_{start}^{w} \land \varphi_{\delta} \land \varphi_{accept}$ $\Rightarrow Model check \neg \varphi_{w}.$

PSPACE-completeness

Claim: The LTL model checking problem can be solved by a nondeterministic polynomial space-bounded algorithm Idea: Guess, nondeterministically, an accepting run in $S \times G_{\varphi}$: $u_0 u_1 \dots u_{n-1} (v_0 v_1 \dots v_{m-1})^{\omega}$ where $n, m \leq |S| \cdot 2^{|\varphi|}$

- Guess *n*, *m* nondeterministically by guessing $\lceil \log(|S| \cdot 2^{|\varphi|}) \rceil = O(\log(|S|) \cdot |\varphi|)$ bits.
- Guess the sequence $u_0u_1 \dots u_{n-1}u_n \dots u_{n+m}$ where $n_i = (s_i, B_i)$ such that
 - s_i is a successor of s_{i-1} for $i \ge 1$
 - B_i is elementary
 - $B_i \cap AP = L(s_i)$
 - $B_i \in \delta(B_{i-1}, L(s_{i-1}))$ for $i \ge 1$.
- Check if $u_n = u_{n+m}$
- Check that whenever $\varphi_1 \cup \varphi_2 \in B_i$ for some $i \in \{n, \dots, n+m-1\}$ then $\exists j \in \{n, \dots, n+m-1\}$ with $\varphi_2 \in B_j$

n + *m* can be exponential. However, we only need:

- ▶ pair of states u_{i-1}, u_i;
- flag which $\varphi_1 \cup \varphi_2$ have appeared in loop;
- flag which φ_2 have appeared;
- ► u_n

 \Rightarrow polynomial space

LTL satisfiability and validity checking

- Satisfiability problem: $Words(\varphi) \neq \emptyset$ for LTL-formula φ ?
 - does there exist a transition system for which φ holds?
- Solution: construct an NBA \mathcal{A}_{ϕ} and check for emptiness
 - nested depth-first search for checking persistence properties
- Validity problem: is $\varphi \equiv \text{true}$, i.e., $Words(\varphi) = (2^{AP})^{\omega}$?
 - does φ hold for every transition system?
- Solution: as for satisfiability, as φ is valid iff $\neg \varphi$ is not satisfiable

runtime is exponential;

a more efficient algorithm most probably does not exist!

LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Idea: Reduce model checking problem of φ to satisfiability problem by encoding transition system as LTL formula:

$$\psi = \psi_I \wedge \Box \psi_S \wedge \Box \psi_{AP}$$

•
$$\psi_I = \bigvee_{q \in I} q$$

•
$$\psi_{S} = \bigwedge_{q \in S} q \rightarrow \bigcirc \bigvee_{q' \in \mathsf{Post}(q)} q'$$

• $\psi_{AP} = \bigwedge_{q \in S} q \to \bigwedge_{a \in L(q)} a \land \bigwedge_{a \notin L(q)} \neg a$

Check satisfiability of $\psi \wedge \neg \varphi$.

Summary of LTL model checking (1)

- LTL is a logic for formalizing path-based properties
- Expansion law allows for rewriting until into local conditions and next
- LTL-formula φ can be transformed algorithmically into NBA \mathcal{A}_{φ}
 - this may cause an exponential blow up
 - algorithm: first construct a GNBA for φ ; then transform it into an equivalent NBA
- LTL-formulae describe ω-regular LT-properties
 - but do not have the same expressivity as ω -regular languages

Summary of LTL model checking (2)

- $TS \vDash \varphi$ can be solved by a nested depth-first search in $TS \otimes A_{\neg \varphi}$
 - + time complexity of the LTL model-checking algorithm is linear in *TS* and exponential in $|\varphi|$
- Fairness assumptions can be described by LTL-formulae the model-checking problem for LTL with fairness is reducible to the standard LTL model-checking problem
- The LTL-model checking problem is PSPACE-complete
- Satisfiability and validity of LTL amounts to NBA emptiness-check
- The satisfiability and validitiy problems for LTL are PSPACE-complete

Linear and branching temporal logic

Linear temporal logic:

"statements about (all) paths starting in a state"

- ▶ $s \models \Box (x \le 20)$ iff for all possible paths starting in *s* always $x \le 20$
- Branching temporal logic:

"statements about all or some paths starting in a state"

- $s \models AG(x \le 20)$ iff for all paths starting in *s* always $x \le 20$
- $s \models EG(x \le 20)$ iff for **some** path starting in *s* always $x \le 20$
- nesting of path quantifiers is allowed
- Checking E φ in LTL can be done using A $\neg \varphi$
 - ... but this does not work for nested formulas such as AG EF a

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in CTL, but not in LTL
- Distinct model checking algorithms, and their time complexities
- Distinct treatment of fairness assumptions
- Distinct equivalences (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics

Transition systems and trees

"behavior" in a state s	path-based: trace(s)	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACEcomplete $\mathcal{O}\left(TS \cdot 2^{ arphi } ight)$	PTIME $\mathcal{O}\left(TS \cdot \Phi ight)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

Branching temporal logics

There are various branching temporal logics:

- Hennessy-Milner logic
- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines LTL and CTL into a single framework
- Alternation-free modal μ-calculus
- Modal µ-calculus
- Propositional dynamic logic

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

Statements over states

- a ∈ AP
- $\neg \Phi \text{ and } \Phi \land \Psi$
- Εφ
- Α φ
- Statements over paths
 - X Φ the next state fulfills Φ
 - $\Phi \cup \Psi$ Φ holds until a Ψ -state is reached
- \Rightarrow note that X and U alternate with A and E
 - ► AX X Φ and A EX $\Phi \notin$ CTL, but AX AX Φ and AX EX $\Phi \in$ CTL

Alternative syntax: $E \approx \exists, A \approx \forall, X \approx \bigcirc, G \approx \Box, F \approx \diamondsuit$.

 $\begin{array}{c} \text{atomic proposition} \\ \text{negation and conjunction} \\ \text{there } \underline{\text{exists}} \text{ a path fulfilling } \varphi \\ \underline{\text{all}} \text{ paths fulfill } \varphi \end{array}$

Derived operators

potentially Φ :	EFΦ	=	$E(true U \Phi)$	
inevitably Φ:	AFΦ	=	A (true U Φ)	
potentially always Φ :	EGΦ	:=	$\neg AF \neg \Phi$	
invariantly Φ :	AGΦ	=	$\neg EF \neg \Phi$	
weak until:	$E(\PhiW\Psi)$	=	$\neg A \left((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \right)$	
	$A(\Phi W \Psi)$	=	$\neg E \left((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \right)$	

the boolean connectives are derived as usual

Visualization of semantics

AF red

AG <mark>red</mark>

A (yellow U red)

Semantics of CTL state-formulas

Defined by a relation \models such that

 $\textbf{s} \vDash \Phi$ if and only if formula Φ holds in state s

s ⊨ a	iff	$a \in L(s)$
-------	-----	--------------

$$s \models \neg \Phi$$
 iff $\neg (s \models \Phi)$

$$s \vDash \Phi \land \Psi \quad \text{iff} \ (s \vDash \Phi) \land (s \vDash \Psi)$$

- $s \models \mathbf{E} \varphi$ iff $\pi \models \varphi$ for some path π that starts in s
- $s \models A \varphi$ iff $\pi \models \varphi$ for all paths π that start in s

Semantics of CTL path-formulas

Defined by a relation \models such that

 $\pi \vDash \varphi$ if and only if path π satisfies φ

 $\pi \vDash \mathsf{X} \Phi \qquad \text{iff } \pi[\mathsf{1}] \vDash \Phi$

 $\pi \vDash \Phi \, \mathsf{U} \, \Psi \quad \text{ iff } \big(\, \exists \, j \geq \mathsf{0}. \, \pi[j] \vDash \Psi \ \land \ \big(\, \forall \, \mathsf{0} \leq k < j. \, \pi[k] \vDash \Phi \big) \big)$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \models \Phi$ if and only if $\forall s_0 \in I. s_0 \models \Phi$

- this is equivalent to $I \subseteq Sat(\Phi)$
- Point of attention: $TS \neq \Phi$ and $TS \neq \neg \Phi$ is possible!
 - because of several initial states, e.g. $s_0 \models EG \Phi$ and $s'_0 \notin EG \Phi$

CTL equivalence

CTL-formulas Φ and Ψ (over *AP*) are <u>equivalent</u>, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems *TS* over *AP*

$$\Phi \equiv \Psi \quad \text{iff} \quad (TS \vDash \Phi \quad \text{if and only if} \quad TS \vDash \Psi)$$

Duality laws

 $\begin{array}{rcl} \mathsf{A}\mathsf{X}\,\Phi &\equiv \neg\mathsf{E}\mathsf{X}\,\neg\Phi \\ \\ \mathsf{E}\mathsf{X}\,\Phi &\equiv \neg\mathsf{A}\mathsf{X}\,\neg\Phi \\ \\ \mathsf{A}\mathsf{F}\,\Phi &\equiv \neg\mathsf{E}\,\mathsf{G}\,\neg\Phi \\ \\ \\ \mathsf{E}\mathsf{F}\,\Phi &\equiv \neg\mathsf{A}\,\mathsf{G}\,\neg\Phi \\ \\ \mathsf{A}\,(\Phi\,\mathsf{U}\,\Psi) &\equiv \neg\mathsf{E}\,((\Phi\,\wedge\,\neg\Psi)\,\mathsf{W}\,(\neg\Phi\,\wedge\,\neg\Psi)) \end{array}$

Expansion laws

Recall in LTL: $\varphi \cup \psi \equiv \psi \lor (\varphi \land X(\varphi \cup \psi))$

In CTL: $A(\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land AXA(\Phi \cup \Psi))$ $AF\Phi \equiv \Phi \lor AXAF\Phi$ $AG\Phi \equiv \Phi \land AXAG\Phi$ $E(\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land EXE(\Phi \cup \Psi))$ $EF\Phi \equiv \Phi \lor EXEF\Phi$ $EG\Phi \equiv \Phi \land EXEG\Phi$

Distributive laws

Recall in LTL:

$$\begin{array}{rcl} \mathsf{G}\left(\varphi \land \psi\right) & \equiv & \mathsf{G}\,\varphi \land \mathsf{G}\,\psi \\ \mathsf{F}\left(\varphi \lor \psi\right) & \equiv & \mathsf{F}\,\varphi \lor \mathsf{F}\,\psi \end{array}$$

In CTL:

 $AG(\Phi \land \Psi) \equiv AG\Phi \land AG\Psi$ $EF(\Phi \lor \Psi) \equiv EF\Phi \lor EF\Psi$

note that EG $(\Phi \land \Psi) \notin$ EG $\Phi \land$ EG Ψ and AF $(\Phi \lor \Psi) \notin$ AF $\Phi \lor$ AF Ψ

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

$$\Phi ::= \mathsf{true} \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \mathsf{EX} \Phi \left| \mathsf{E} (\Phi_1 \mathsf{U} \Phi_2) \right| \mathsf{EG} \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

Model checking CTL

- How to check whether state graph *TS* satisfies CTL formula $\widehat{\Phi}$?
 - convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
 - compute <u>recursively</u> the set $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive bottom-up computation of $Sat(\Phi)$:
 - consider the parse-tree of Φ
 - start to compute Sat(a_i), for all leafs in the tree
 - then go one level up in the tree and determine Sat(·) for these nodes

e.g.,:
$$Sat(\underbrace{\Psi_1 \land \Psi_2}_{\text{node at level }i}) = Sat(\underbrace{\Psi_1}_{\text{level }i-1}) \cap Sat(\underbrace{\Psi_2}_{\text{level }i-1})$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on..... until the root is treated, i.e., $Sat(\Phi)$ is computed

Example

Require: finite transition system *TS* with states *S* and initial states *I*, and CTL formula Φ (both over *AP*) **Ensure:** $TS \models \Phi$

```
{compute the sets Sat(\Phi) = \{ q \in S \mid q \models \Phi \}}
for all i \le |\Phi| do
for all \Psi \in Sub(\Phi) with |\Psi| = i do
compute Sat(\Psi) from Sat(\Psi') {for maximal proper \Psi' \in Sub(\Psi)}
end for
end for
return I \subseteq Sat(\Phi)
```

Characterization of Sat (1)

For all CTL formulas Φ , Ψ over *AP* it holds:

Sat(true) = S $Sat(a) = \{q \in S \mid a \in L(q)\}, \text{ for any } a \in AP$ $Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$ $Sat(\neg \Phi) = S \smallsetminus Sat(\Phi)$ $Sat(EX \Phi) = \{q \in S \mid Post(q) \cap Sat(\Phi) \neq \emptyset\}$

for a given finite transition system with states S

Characterization of Sat (2)

► $Sat(E(\Phi \cup \Psi))$ is the <u>smallest</u> subset *T* of *S*, such that: (1) $Sat(\Psi) \subseteq T$ and (2) $(q \in Sat(\Phi))$ and $Post(q) \cap T \neq \emptyset$) $\Rightarrow q \in T$

• $Sat(EG \Phi)$ is the largest subset T of S, such that:

(3) $T \subseteq Sat(\Phi)$ and (4) $q \in T$ implies $Post(q) \cap T \neq \emptyset$

Computing $Sat(E(\Phi \cup \Psi))(1)$

• $Sat(E(\Phi \cup \Psi))$ is the smallest set $T \subseteq Q$ such that:

(1) $Sat(\Psi) \subseteq T$ and (2) $(q \in Sat(\Phi) \text{ and } Post(q) \cap T \neq \emptyset) \Rightarrow q \in T$

• This suggests to compute $Sat(E(\Phi \cup \Psi))$ iteratively:

 $T_0 = Sat(\Psi)$ and $T_{i+1} = T_i \cup \{q \in Sat(\Phi) \mid Post(q) \cap T_i \neq \emptyset\}$

- T_i = states that can reach a Ψ -state in at most *i* steps via a Φ -path
- By induction on *j* it follows:

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots \subseteq Sat(\mathsf{E}(\Phi \cup \Psi))$$

Computing $Sat(E(\Phi \cup \Psi))$ (2)

- ▶ *TS* is finite, so for some $j \ge 0$ we have: $T_j = T_{j+1} = T_{j+2} = \dots$
- Therefore: $T_j = T_j \cup \{ q \in Sat(\Phi) \mid Post(q) \cap T_j \neq \emptyset \}$
- Hence: $\{q \in Sat(\Phi) \mid Post(q) \cap T_j \neq \emptyset\} \subseteq T_j$
 - ▶ hence, T_j satisfies (2), i.e., $(q \in Sat(\Phi) \text{ and } Post(q) \cap T_j \neq \emptyset) \Rightarrow q \in T_j$
 - ▶ further, $Sat(\Psi) = T_0 \subseteq T_j$ so, T_j satisfies (1), i.e. $Sat(\Psi) \subseteq T_j$
- As $Sat(E(\Phi \cup \Psi))$ is the <u>smallest</u> set satisfying (1) and (2):
 - $Sat(E(\Phi \cup \Psi)) \subseteq T_j$ and thus $Sat(E(\Phi \cup \Psi)) = T_j$
- Hence: $T_0 \subsetneqq T_1 \subsetneqq T_2 \subsetneqq \ldots \subsetneqq T_j = T_{j+1} = \ldots = Sat(\mathsf{E}(\Phi \cup \Psi))$

Computing $Sat(E(\Phi \cup \Psi))$ (3)

Require: finite transition system with states S CTL-formula $E(\Phi \cup \Psi)$ **Ensure:** $Sat(E(\Phi \cup \Psi)) = \{q \in S \mid q \models E(\Phi \cup \Psi)\}$

 $V := Sat(\Psi); \{V \text{ administers states } q \text{ with } q \models E(\Phi \cup \Psi)\}$ $T := V; \{T \text{ contains the already visited states } q \text{ with } q \models E(\Phi \cup \Psi)\}$ while $V \neq \emptyset$ do let $q' \in V;$ $V := V \setminus \{q'\};$ for all $q \in Pre(q')$ do if $q \in Sat(\Phi) \setminus T$ then $V := V \cup \{q\}; T := T \cup \{q\};$ endif end for end while return T

Computing $Sat(EG \Phi)$

 $V := S \setminus Sat(\Phi)$; {V contains any not visited q' with $q' \notin EG\Phi$ }

 $T := Sat(\Phi)$; {T contains any q for which $q \models EG\Phi$ has not yet been disproven}

for all $q \in Sat(\Phi)$ do c[q] := |Post(q)|; od {initialize array c}

```
while V \neq \emptyset do
   {loop invariant: c[q] = |Post(q) \cap (T \cup V)|}
   let q' \in V; \{q' \neq \Phi\}
    V := V \setminus \{q'\}; \{q' \text{ has been considered}\}
   for all q \in Pre(q') do
       if q \in T then
           c[q] := c[q] - 1; {update counter c[q] for predecessor q of q'}
           if c[q] = 0 then
              T := T \setminus \{q\}; V := V \cup \{q\}; \{q \text{ does not have any successor in } T\}
           end if
       end if
   end for
end while
return T
```

Alternative algorithm for $Sat(EG \Phi)$

- 1. Consider only state q if $q \models \Phi$, otherwise eliminate q
 - change states to $S' = Sat(\Phi)$,
 - $\Rightarrow~$ all removed states will not satisfy EG $\Phi,$ and thus can be safely removed
- 2. Determine all non-trivial strongly connected components in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one edge
 - \Rightarrow any state in such SCC satisfies EG Φ
- 3. $q \models EG \Phi$ is equivalent to "some <u>SCC is reachable</u> from q"
 - this search can be done in a backward manner