Verification

Lecture 8

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Overview of LTL model checking

REVIEW: Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \ldots, F_k\}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

REVIEW: Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:

•
$$q_0 \in Q_0$$
 and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \le i$

- Run $q_0 q_1 \dots$ is <u>accepting</u> if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many *i*
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- ► The <u>accepted language</u> of *G*:

 $\mathcal{L}_{\omega}(\mathcal{G}) = \left\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \right\}$

REVIEW: From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with: $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$ where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}

- Sketch of transformation GNBA (with k accept sets) into an equivalent NBA:
 - make k copies of the automaton
 - initial states of NBA := the initial states in the first copy
 - final states of NBA := accept set F₁ in the first copy
 - on visiting in *i*-th copy a state in F_i , move to the (i+1)-st copy

From LTL to GNBA (idea)

GNBA \mathcal{G}_{φ} over 2^{AP} for LTL-formula φ with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$:

- Assume φ only contains the operators \land , \neg , \bigcirc and U
 - ∨, →, ◇, □, W, and so on, are expressed in terms of these basic operators
- States are elementary sets of sub-formulas in φ
 - ▶ for $\sigma = A_0A_1A_2... \in Words(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - ... to obtain the infinite word $\overline{\sigma} = B_0 B_1 B_2 \dots$ such that

 $\psi \in B_i$ if and only if $\sigma^i = A_i A_{i+1} A_{i+2} \ldots \models \psi$

- $\overline{\sigma}$ is intended to be a run in GNBA \mathcal{G}_{φ} for σ
- ► Transitions are derived from the semantics of ○ and the expansion law for U
- Accept sets guarantee that: $\overline{\sigma}$ is an accepting run for σ iff $\sigma \vDash \varphi$

From LTL to GNBA: the states (example)

• Let $\varphi = a \cup (\neg a \land b)$ and $\sigma = \{a\} \{a, b\} \{b\} \dots$

- B_i is a subset of $\{a, b, \neg a \land b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \land b), \neg \varphi\}$
- this set of formulas is also called the <u>closure</u> of φ
- Extend $A_0 = \{a\}$, $A_1 = \{a, b\}$, $A_2 = \{b\}$, ... as follows:
 - extend A_0 with $\neg b$, $\neg(\neg a \land b)$, and φ as they hold in $\sigma^0 = \sigma$ (and no others)
 - extend A_1 with $\neg(\neg a \land b)$ and φ as they hold in σ^1 (and no others)
 - extend A_2 with $\neg a$, $\neg a \land b$ and φ as they hold in σ^2 (and no others)
 - ... and so forth
 - this is not effective and is performed in the automaton (not on words)
- Result:

$$\overline{\sigma} = \underbrace{\left\{ a, \neg b, \neg (\neg a \land b), \varphi \right\}}_{B_0} \underbrace{\left\{ a, b, \neg (\neg a \land b), \varphi \right\}}_{B_1} \underbrace{\left\{ \neg a, b, \neg a \land b, \varphi \right\}}_{B_2} \dots$$

Closure

For LTL-formula φ , the set $closure(\varphi)$ consists of all sub-formulas ψ of φ and their negation $\neg \psi$ (where ψ and $\neg \neg \psi$ are identified)

for
$$\varphi = a \cup (\neg a \land b)$$
, $closure(\varphi) = \{a, b, \neg a, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi\}$

can we take B_i as any subset of $closure(\varphi)$? no! they must be elementary

Elementary sets of formulae

 $B \subseteq closure(\varphi)$ is <u>elementary</u> if:

1. *B* is logically consistent if for all $\varphi_1 \land \varphi_2, \psi \in closure(\varphi)$:

- $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
- $\psi \in B \implies \neg \psi \notin B$
- true \in *closure*(φ) \Rightarrow true \in *B*
- 2. *B* is locally consistent if for all $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:

$$\varphi_2 \in B \implies \varphi_1 \cup \varphi_2 \in B$$

- $\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$
- 3. *B* is maximal, i.e., for all $\psi \in closure(\varphi)$:

•
$$\psi \notin B \Rightarrow \neg \psi \in B$$

The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- Q is the set of all elementary sets of formulas B ⊆ closure(φ)
 Q₀ = { B ∈ Q | φ ∈ B }
- $\succ \mathcal{F} = \left\{ \left\{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \right\} \mid \varphi_1 \cup \varphi_2 \in closure(\varphi) \right\}$
- The transition relation $\delta : Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\psi_1 \cup \psi_2 \in closure(\varphi)$:

$$\psi_1 \cup \psi_2 \in B \iff \left(\psi_2 \in B \lor (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')\right)$$

GNBA for LTL-formula $\bigcirc a$

GNBA for LTL-formula *a* U *b*

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over *AP*) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that: (a) *Words*(φ) = $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$

(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$

(c) #accepting sets of \mathcal{G}_{arphi} is bounded above by $\mathcal{O}(|arphi|)$

 \Rightarrow every LTL-formula expresses an ω -regular property!

Proof

 $Words(\varphi) \subseteq \mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$

- Let $\sigma = A_0 A_1 \ldots \in Words(\varphi)$.
- We construct an accepting run $B_0B_1 \dots$ of \mathcal{G}_{φ} on σ as follows: $B_i = \{ \psi \in closure(\varphi) \mid A_iA_{i+1} \dots \models \psi \}$
 - 1. $B_0B_1...$ is a run of \mathcal{G}_{φ} on σ , because for all positions *i*:

•
$$A_i = B_i \cap AP$$

$$\bigcirc \psi \in B_i \\ iff A_i A_{i+1} A_{i+2} \ldots \models \bigcirc \psi \\ iff A_{i+1} A_{i+2} \ldots \models \psi \\ iff \psi \in B_{i+1} \\ & \psi_1 \cup \psi_2 \in B_i \\ iff A_i A_{i+1} A_{i+2} \ldots \models \psi_1 \cup \psi_2 \\ iff A_i A_{i+1} A_{i+2} \ldots \models \psi_2 \text{ or } (A_i A_{i+1} \ldots \models \psi_1 \text{ and } A_{i+1} A_{i+2} \ldots \models \psi_1 \cup \psi_2) \\ iff \psi_2 \in B_i \text{ or } (\psi_1 \in B_i \text{ and } \psi_1 \cup \psi_2 \in B_{i+1}) \\ \end{cases}$$

- 2. $B_0B_1...$ is an accepting run, i.e., for every $\psi_{1,j} \cup \psi_{2,j} \in closure(\varphi)$, $B_i \in F_j = \{ B \in Q \mid \psi_{1,j} \cup \psi_{2,j} \notin B \text{ or } \psi_{j,2} \in B \}$ for infinitely many *i*.
 - Suppose $B_i \notin F_j$ for all $i \ge k$ for some k
 - $B_i \notin F_j \Rightarrow \psi_{1,j} \cup \psi_{2,j} \in B_i \text{ and } \psi_{2,j} \notin B_i$
 - Hence, $A_i A_{i+1} \ldots \models \psi_{1,j} \cup \psi_{2,j}$ and $A_i A_{i+1} \ldots \not\models \psi_{2,j}$
 - ► Thus, $A_k A_{k+1} \ldots \models \psi_{1,j} \cup \psi_{2,j}$ but $A_i A_{i+1} \ldots \not\models \psi_{2,j}$ for all $i \ge k$.
 - Contradiction.

$\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) \subseteq Words(\varphi)$

- Let $A_0A_1 \ldots \in L_{\omega}(\mathcal{G}_{\varphi})$ with accepting run $B_0B_1 \ldots$
- We show that for all positions $i \ge 0$, $\psi \in B_i$ iff $A_i A_{i+1} \dots \models \psi$. Proof by <u>structural induction</u> on ψ :
- $\psi \in AP$: Since $\delta(B, A) = \emptyset$ if $A \neq B \cap AP$, $A_i = B_i \cap AP$
- ► $\psi = \bigcirc \psi'$: By IH, $\psi' \in B_{i+1}$ iff $A_{i+1}A_{i+2} \dots \psi'$. Hence, $\bigcirc \psi' \in B_i$ iff $A_iA_{i+1} \dots \models \bigcirc \psi$
- $\psi = \psi_1 \wedge \psi_2$: By IH, . . .
- $\psi = \neg \psi'$: By IH, . . .
- $\psi = \psi_1 \cup \psi_2$:
 - 1. $A_i A_{i+1} \ldots \models \psi \Rightarrow \psi \in B_i$:
 - Assume $A_i A_{i+1} \ldots \models \psi_1 \cup \psi_2$.
 - There exists a $k \ge i$ s.t. $A_k A_{k+1} \ldots \models \psi_2$ and $A_j A_{j+1} \models \psi_1$ for all $i \le j < k$
 - $\Rightarrow \psi_2 \in B_k$ and $\psi_1 \in B_j$ for all $i \le j < k$
 - ► Hence, $\psi_1 \cup \psi_2 \in B_k$, $\psi_1 \cup \psi_2 \in B_{k-1}$, ..., $\psi_1 \cup \psi_2 \in B_i$.

2. $\psi \in B_i \Rightarrow A_i A_{i+1} \dots \models \psi$ • Assume $\psi_1 \cup \psi_2 \in B_i$ • Case 1: $\psi_2 \notin B_j$ for all $j \ge i$: By ind. on $j, \psi_1 \in B_j$ and $\psi_1 \cup \psi_2 \in B_j$ for all $j \ge i$ $\Rightarrow B_j \notin \{B \in Q \mid \psi_1 \cup \psi_2 \notin B \text{ or } \psi_2 \in B\}$. Contradiction. • Case 2: There is a smallest $k \ge i$ with $\psi_2 \in B_k$. Hence, by IH, $A_k A_{k+1} \dots \models \psi_2$ By ind. on $j, i \le j < k, \psi_1 \in B_j$, and hence, by IH, $A_j A_{j+1} \dots \models \psi_1$ $\Rightarrow A_i A_{i+1} A_{i+2} \dots \models \psi_1 \cup \psi_2$

NBA are more expressive than LTL

There is no LTL formula φ with $Words(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{\left\{ a \right\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \ge 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{P}$

 \Rightarrow there are ω -regular properties that cannot be expressed in LTL!

Proof

- Proof by contradiction:
 Assume there is an LTL formula φ with Words(φ) = P.
- Let $w_1 = \{a\}^{n+1} \varnothing \{a\}^{\omega}$ and $w_2 = \{a\}^{n+2} \varnothing \{a\}^{\omega}$ where *n* is the number of \bigcirc -operators in φ . We show that $w_1 \in Words(\varphi)$ iff $w_2 \in Words(\varphi)$. This contradicts $Words(\varphi) = P$. <u>Structural induction</u> on φ :
- $\varphi \in AP$: φ only depends on first position
- ► $\varphi = \bigcirc \psi$: by IH, $\{a\}^n \varnothing \{a\}^\omega \in Words(\psi)$ iff $\{a\}^{n+1} \varnothing \{a\}^\omega \in Words(\psi)$. Hence, $w_1 \in Words(\varphi)$ iff $w_2 \in Words(\varphi)$.

• $\varphi = \psi_1 \cup \psi_2$: 1. $w_1 \in Words(\varphi) \Rightarrow w_2 \in Words(\varphi)$: • Case 1: $w_1 \models \psi_2$. Then, by IH, $w_2 \models \psi_2$. • Case 2: $w_1 \neq \psi_2$. Let k be the smallest index such that $w_1[k \dots] \models \psi_2$ and $\forall 0 \le i < k.w_1[i \dots] \models \psi_1$. \Rightarrow $w_2[k+1,\ldots] \models \psi_2$ and $\forall 1 \le i < k.w_2[i\ldots] \models \psi_1$. Additionally, by IH, $w_1 \models \psi_1 \Rightarrow w_2 \models \psi_1$. 2. $w_2 \in Words(\varphi) \Rightarrow w_1 \in Words(\varphi)$ • Case 1: $w_2 \models \psi_2$. Then, by IH, $w_1 \models \psi_2$. • Case 2: $w_2 \neq \psi_2$. Let k be the smallest index such that $w_2[k \dots] \models \psi_2$ and $\forall 0 \le i < k.w_2[i \dots] \models \psi_1$. \Rightarrow $w_1[k-1,\ldots] \models \psi_2$ and $\forall 1 \le i < k-1. w_1[i\ldots] \models \psi_1$.

Complexity for LTL to NBA

For any LTL-formula φ (over *AP*) there exists an NBA \mathcal{A}_{φ} with $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ and which can be constructed in time and space in $2^{\mathcal{O}(|\varphi|)}$

Justification complexity: next slide

Time and space complexity

- States GNBA \mathcal{G}_{φ} are elementary sets of formulae in $closure(\varphi)$
 - sets *B* can be represented by bit vectors with single bit per subformula ψ of φ
- The number of states in \mathcal{G}_{φ} is bounded by $2^{|\text{subf}(\varphi)|}$
 - where subf(φ) denotes the set of all subformulae of φ
 - $|\operatorname{subf}(\varphi)| \le 2 \cdot |\varphi|$; so, the number of states in \mathcal{G}_{φ} is bounded by $2^{\mathcal{O}(|\varphi|)}$
- The number of accepting sets of \mathcal{G}_{arphi} is bounded by $\mathcal{O}(|arphi|)$
- ► The number of states in NBA \mathcal{A}_{φ} is thus bounded by $2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|) = 2^{\mathcal{O}(|\varphi| + \log |\varphi|)} = 2^{\mathcal{O}(|\varphi|)}$ qed

Lower bound

There exists a family of LTL formulas φ_n with $|\varphi_n| = O(poly(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2ⁿ states

Proof

Let *AP* be non-empty, that is, $|2^{AP}| \ge 2$ and:

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq AP \land \sigma \in \left(2^{AP}\right)^{\omega} \right\}, \qquad \text{for } n \ge 0$$

It follows $\mathcal{L}_n = Words(\varphi_n)$ where $\varphi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ φ_n is an LTL formula of polynomial length: $|\varphi_n| \in \mathcal{O}(|AP| \cdot n)$ However, any NBA \mathcal{A} with $\mathcal{L}_{\varphi}(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states

Claim: any NBA \mathcal{A} for $\bigwedge_{a \in A^p} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ has at least 2^n states

- Words of the form $A_1 \dots A_n A_1 \dots A_n \varnothing \varnothing \oslash \dots$ are accepted by \mathcal{A}
- \mathcal{A} thus has for every word $A_1 \dots A_n$ of length n, a state $q(A_1 \dots A_n)$, which can be reached from an initial state by consuming $A_1 \dots A_n$.
- From $q(A_1...A_n)$, it is possible to visit an accept state infinitely often by accepting the suffix $A_1...A_n \oslash \oslash \oslash ...$

• If
$$A_1 \ldots A_n \neq A'_1 \ldots A'_n$$
 then

$$A_1 \dots A_n A'_1 \dots A'_n \otimes \otimes \otimes \dots \notin \mathcal{L}_n = \mathcal{L}_{\omega}(\mathcal{A})$$

- Therefore, the states $q(A_1 ... A_n)$ are all pairwise different
- ► Given $|2^{AP}|$ possible sequences $A_1 ... A_n$, NBA A has $\ge (|2^{AP}|)^n \ge 2^n$ states

Complexity for LTL model checking

The time and space complexity of LTL model checking is in $\mathcal{O}\left(|TS|\cdot 2^{|\varphi|}\right)$

On-the-fly LTL model checking

- Idea: find a counter-example during the generation of Reach(TS) and $A_{\neg \varphi}$
 - exploit the fact that Reach(TS) and $A_{\neg \varphi}$ can be generated in parallel
- \Rightarrow Generate $Reach(TS \otimes A_{\neg \varphi})$ "on demand"
 - consider a new vertex only if no accepting cycle has been found yet
 - only consider the successors of a state in $\mathcal{A}_{\neg \varphi}$ that match current state in *TS*
- ⇒ Possible to find an accepting cycle without generating $A_{\neg \varphi}$ entirely
 - This on-the-fly scheme is adopted for example in the model checker SPIN

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete

[Sistla & Clarke 1985]