Verification

Lecture 8

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Overview of LTL model checking

REVIEW: Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ where:

- Q is a finite set of states with $Q_{0} \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a transition function
- $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ is a (possibly empty) subset of 2^{Q}

The size of \mathcal{G}, denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$
|\mathcal{G}|=|Q|+\sum_{q \in Q} \sum_{A \in \Sigma}|\delta(q, A)|
$$

REVIEW: Language of a GNBA

- $\operatorname{GNBA} \mathcal{G}=\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ and word $\sigma=A_{0} A_{1} A_{2} \ldots \in \Sigma^{\omega}$
- A run for σ in \mathcal{G} is an infinite sequence $q_{0} q_{1} q_{2} \ldots$ such that:
- $q_{0} \in Q_{0}$ and $q_{i} \xrightarrow{A_{i}} q_{i+1}$ for all $0 \leq i$
- Run $q_{0} q_{1} \ldots$ is accepting if for all $F \in \mathcal{F}: q_{i} \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is accepted by \mathcal{G} if there exists an accepting run for σ
- The accepted language of \mathcal{G} :
$\mathcal{L}_{\omega}(\mathcal{G})=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ there exists an accepting run for σ in $\left.\mathcal{G}\right\}$

REVIEW: From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$
\mathcal{L}_{\omega}(\mathcal{G})=\mathcal{L}_{\omega}(\mathcal{A}) \text { and }|\mathcal{A}|=\mathcal{O}(|\mathcal{G}| \cdot|\mathcal{F}|)
$$

where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}

- Sketch of transformation GNBA (with k accept sets) into an equivalent NBA:
- make k copies of the automaton
- initial states of NBA := the initial states in the first copy
- final states of NBA := accept set F_{1} in the first copy
- on visiting in i-th copy a state in F_{i}, move to the ($i+1$)-st copy

From LTL to GNBA (idea)

GNBA \mathcal{G}_{φ} over $2^{\text {AP }}$ for LTL-formula φ with $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$:

- Assume φ only contains the operators \wedge, \neg, \bigcirc and U
- $V, \rightarrow, \diamond, \square, W$, and so on, are expressed in terms of these basic operators
- States are elementary sets of sub-formulas in φ
- for $\sigma=A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\varphi)$, expand $A_{i} \subseteq A P$ with sub-formulas of φ
- ... to obtain the infinite word $\bar{\sigma}=B_{0} B_{1} B_{2} \ldots$ such that

$$
\psi \in B_{i} \quad \text { if and only if } \quad \sigma^{i}=A_{i} A_{i+1} A_{i+2} \ldots \vDash \psi
$$

- $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_{φ} for σ
- Transitions are derived from the semantics of \bigcirc and the expansion law for U
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \vDash \varphi$

From LTL to GNBA: the states (example)

- Let $\varphi=a \cup(\neg a \wedge b)$ and $\sigma=\{a\}\{a, b\}\{b\} \ldots$
- B_{i} is a subset of $\{a, b, \neg a \wedge b, \varphi\} \cup\{\neg a, \neg b, \neg(\neg a \wedge b), \neg \varphi\}$
- this set of formulas is also called the closure of φ
- Extend $A_{0}=\{a\}, A_{1}=\{a, b\}, A_{2}=\{b\}, \ldots$ as follows:
- extend A_{0} with $\neg b, \neg(\neg a \wedge b)$, and φ as they hold in $\sigma^{0}=\sigma$ (and no others)
- extend A_{1} with $\neg(\neg a \wedge b)$ and φ as they hold in σ^{1} (and no others)
- extend A_{2} with $\neg a, \neg a \wedge b$ and φ as they hold in σ^{2} (and no others)
- ... and so forth
- this is not effective and is performed in the automaton (not on words)
- Result:

$$
\bar{\sigma}=\underbrace{\{a, \neg b, \neg(\neg a \wedge b), \varphi\}}_{B_{0}} \underbrace{\{a, b, \neg(\neg a \wedge b), \varphi\}}_{B_{1}} \underbrace{\{\neg a, b, \neg a \wedge b, \varphi\}}_{B_{2}} \cdots
$$

Closure

For LTL-formula φ, the set closure (φ)

consists of all sub-formulas ψ of φ and their negation $\neg \psi$
(where ψ and $\neg \neg \psi$ are identified)

$$
\text { for } \varphi=a \cup(\neg a \wedge b), \text { closure }(\varphi)=\{a, b, \neg a, \neg b, \neg a \wedge b, \neg(\neg a \wedge b), \varphi, \neg \varphi\}
$$

can we take B_{i} as any subset of closure (φ) ? no! they must be elementary

Elementary sets of formulae

$B \subseteq$ closure (φ) is elementary if:

1. B is logically consistent if for all $\varphi_{1} \wedge \varphi_{2}, \psi \in \operatorname{closure}(\varphi)$:

- $\varphi_{1} \wedge \varphi_{2} \in B \Leftrightarrow \varphi_{1} \in B$ and $\varphi_{2} \in B$
- $\psi \in B \Rightarrow \neg \psi \notin B$
- true $\in \operatorname{closure}(\varphi) \Rightarrow$ true $\in B$

2. B is locally consistent if for all $\varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)$:

- $\varphi_{2} \in B \Rightarrow \varphi_{1} \cup \varphi_{2} \in B$
- $\varphi_{1} \cup \varphi_{2} \in B$ and $\varphi_{2} \notin B \Rightarrow \varphi_{1} \in B$

3. B is maximal, i.e., for all $\psi \in \operatorname{closure}(\varphi)$:

- $\psi \notin B \Rightarrow \neg \psi \in B$

The GNBA of LTL-formula φ

For LTL-formula φ, let $\mathcal{G}_{\varphi}=\left(Q, 2^{A P}, \delta, Q_{0}, \mathcal{F}\right)$ where

- Q is the set of all elementary sets of formulas $B \subseteq \operatorname{closure}(\varphi)$
- $Q_{0}=\{B \in Q \mid \varphi \in B\}$
- $\mathcal{F}=\left\{\left\{B \in Q \mid \varphi_{1} \cup \varphi_{2} \notin B\right.\right.$ or $\left.\left.\varphi_{2} \in B\right\} \mid \varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)\right\}$
- The transition relation $\delta: Q \times 2^{A P} \rightarrow 2^{Q}$ is given by:
- $\delta(B, B \cap A P)$ is the set of all elementary sets of formulas B^{\prime} satisfying:
(i) For every $\bigcirc \psi \in \operatorname{closure}(\varphi): \bigcirc \psi \in B \Leftrightarrow \psi \in B^{\prime}$, and
(ii) For every $\psi_{1} \cup \psi_{2} \in \operatorname{closure}(\varphi)$:

$$
\psi_{1} \cup \psi_{2} \in B \Leftrightarrow\left(\psi_{2} \in B \vee\left(\psi_{1} \in B \wedge \psi_{1} \cup \psi_{2} \in B^{\prime}\right)\right)
$$

GNBA for LTL-formula $\bigcirc a$

GNBA for LTL-formula $a \cup b$

Main result

[Vardi, Wolper \& Sistla 1986]
For any LTL-formula φ (over $A P$) there exists a GNBA \mathcal{G}_{φ} over $2^{\text {AP }}$ such that:
(a) $\operatorname{Words}(\varphi)=\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$
(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$
(c) \#accepting sets of \mathcal{G}_{φ} is bounded above by $\mathcal{O}(|\varphi|)$
\Rightarrow every LTL-formula expresses an ω-regular property!

Proof

$\operatorname{Words}(\varphi) \subseteq \mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$

- Let $\sigma=A_{0} A_{1} \ldots \in \operatorname{Words}(\varphi)$.
- We construct an accepting run $B_{0} B_{1} \ldots$ of \mathcal{G}_{φ} on σ as follows: $B_{i}=\left\{\psi \in \operatorname{closure}(\varphi) \mid A_{i} A_{i+1} \ldots \vDash \psi\right\}$

1. $B_{0} B_{1} \ldots$ is a run of \mathcal{G}_{φ} on σ, because for all positions i :

- $A_{i}=B_{i} \cap A P$
- $O \psi \in B_{i}$

$$
\text { iff } A_{i} A_{i+1} A_{i+2} \ldots \vDash \bigcirc \psi
$$

$$
\text { iff } A_{i+1} A_{i+2} \ldots=\psi
$$

iff $\psi \in B_{i+1}$

- $\psi_{1} \cup \psi_{2} \in B_{i}$
iff $A_{i} A_{i+1} A_{i+2} \ldots \vDash \psi_{1} \cup \psi_{2}$
iff $A_{i} A_{i+1} A_{i+2} \ldots \vDash \psi_{2}$ or $\left(A_{i} A_{i+1} \ldots \vDash \psi_{1}\right.$ and $\left.A_{i+1} A_{i+2} \ldots \vDash \psi_{1} \cup \psi_{2}\right)$
iff $\psi_{2} \in B_{i}$ or $\left(\psi_{1} \in B_{i}\right.$ and $\left.\psi_{1} \cup \psi_{2} \in B_{i+1}\right)$

Proof (cont'd)

2. $B_{0} B_{1} \ldots$ is an accepting run, i.e., for every $\psi_{1, j} \cup \psi_{2, j} \in \operatorname{closure}(\varphi)$, $B_{i} \in F_{j}=\left\{B \in Q \mid \psi_{1, j} \cup \psi_{2, j} \notin B\right.$ or $\left.\psi_{j, 2} \in B\right\}$ for infinitely many i.

- Suppose $B_{i} \notin F_{j}$ for all $i \geq k$ for some k
- $B_{i} \notin F_{j} \Rightarrow \psi_{1, j} \cup \psi_{2, j} \in B_{i}$ and $\psi_{2, j} \notin B_{i}$
- Hence, $A_{i} A_{i+1} \ldots \vDash \psi_{1, j} \cup \psi_{2, j}$ and $A_{i} A_{i+1} \ldots \neq \psi_{2, j}$
- Thus, $A_{k} A_{k+1} \ldots \vDash \psi_{1, j} \cup \psi_{2, j}$ but $A_{i} A_{i+1} \ldots \neq \psi_{2, j}$ for all $i \geq k$.
- Contradiction.

Proof (cont'd)

$\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right) \subseteq \operatorname{Words}(\varphi)$

- Let $A_{0} A_{1} \ldots \in L_{\omega}\left(\mathcal{G}_{\varphi}\right)$ with accepting run $B_{0} B_{1} \ldots$
- We show that for all positions $i \geq 0, \psi \in B_{i}$ iff $A_{i} A_{i+1} \ldots \vDash \psi$.

Proof by structural induction on ψ :

- $\psi \in A P$: Since $\delta(B, A)=\varnothing$ if $A \neq B \cap A P, A_{i}=B_{i} \cap A P$
- $\psi=\bigcirc \psi^{\prime}:$ By IH, $\psi^{\prime} \in B_{i+1}$ iff $A_{i+1} A_{i+2} \ldots \psi^{\prime}$.

Hence, $\bigcirc \psi^{\prime} \in B_{i}$ iff $A_{i} A_{i+1} \ldots \vDash \bigcirc \psi$

- $\psi=\psi_{1} \wedge \psi_{2}$: By IH, ...
- $\psi=\neg \psi^{\prime}$: By IH, ...
- $\psi=\psi_{1} \cup \psi_{2}$:

1. $A_{i} A_{i+1} \ldots \vDash \psi \Rightarrow \psi \in B_{i}:$

- Assume $A_{i} A_{i+1} \ldots \vDash \psi_{1} \cup \psi_{2}$.
- There exists a $k \geq i$ s.t. $A_{k} A_{k+1} \ldots \vDash \psi_{2}$ and $A_{j} A_{j+1} \vDash \psi_{1}$ for all $i \leq j<k$
$\Rightarrow \Rightarrow \psi_{2} \in B_{k}$ and $\psi_{1} \in B_{j}$ for all $i \leq j<k$
- Hence, $\psi_{1} \cup \psi_{2} \in B_{k}, \psi_{1} \cup \psi_{2} \in B_{k-1}, \ldots, \psi_{1} \cup \psi_{2} \in B_{i}$.

Proof (cont'd)

2. $\psi \in B_{i} \Rightarrow A_{i} A_{i+1} \ldots \vDash \psi$

- Assume $\psi_{1} \cup \psi_{2} \in B_{i}$
- Case $1: \psi_{2} \notin B_{j}$ for all $j \geq i$:

By ind. on $j, \psi_{1} \in B_{j}$ and $\psi_{1} \cup \psi_{2} \in B_{j}$ for all $j \geq i$
$\Rightarrow B_{j} \notin\left\{B \in Q \mid \psi_{1} \cup \psi_{2} \notin B\right.$ or $\left.\psi_{2} \in B\right\}$. Contradiction.

- Case 2: There is a smallest $k \geq i$ with $\psi_{2} \in B_{k}$. Hence, by IH, $A_{k} A_{k+1} \ldots \vDash \psi_{2}$
By ind. on $j, i \leq j<k, \psi_{1} \in B_{j}$, and
hence, by $\mathrm{IH}, A_{j} A_{j+1} \ldots \vDash \psi_{1}$
$\Rightarrow A_{i} A_{i+1} A_{i+2} \ldots=\psi_{1} \cup \psi_{2}$

NBA are more expressive than LTL

There is no LTL formula φ with $\operatorname{Words}(\varphi)=P$ for the LT-property:

$$
P=\left\{A_{0} A_{1} A_{2} \ldots \in\left(2^{\{a\}}\right)^{\omega} \mid a \in A_{2 i} \text { for } i \geq 0\right\}
$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A})=P$
\Rightarrow there are ω-regular properties that cannot be expressed in LTL!

Proof

- Proof by contradiction: Assume there is an LTL formula φ with $\operatorname{Words}(\varphi)=P$.
- Let $w_{1}=\{a\}^{n+1} \varnothing\{a\}^{\omega}$ and
$w_{2}=\{a\}^{n+2} \varnothing\{a\}^{\omega}$
where n is the number of \bigcirc-operators in φ.
We show that $w_{1} \in \operatorname{Words}(\varphi)$ iff $w_{2} \in \operatorname{Words}(\varphi)$.
This contradicts $\operatorname{Words}(\varphi)=P$.
Structural induction on φ :
- $\varphi \in A P: \varphi$ only depends on first position
- $\varphi=\bigcirc \psi$: by IH, $\{a\}^{n} \varnothing\{a\}^{\omega} \in \operatorname{Words}(\psi)$ iff
$\{a\}^{n+1} \varnothing\{a\}^{\omega} \in \operatorname{Words}(\psi)$.
Hence, $w_{1} \in \operatorname{Words}(\varphi)$ iff $w_{2} \in \operatorname{Words}(\varphi)$.

Proof (cont'd)

- $\varphi=\psi_{1} \cup \psi_{2}$:

1. $w_{1} \in \operatorname{Words}(\varphi) \Rightarrow w_{2} \in \operatorname{Words}(\varphi)$:

- Case 1: $w_{1} \vDash \psi_{2}$. Then, by IH, $w_{2} \vDash \psi_{2}$.
- Case 2: $w_{1} \not \neq \psi_{2}$. Let k be the smallest index such that $w_{1}[k \ldots] \vDash \psi_{2}$ and $\forall 0 \leq i<k . w_{1}[i \ldots] \vDash \psi_{1}$. $\Rightarrow w_{2}[k+1, \ldots] \vDash \psi_{2}$ and $\forall 1 \leq i<k . w_{2}[i \ldots] \vDash \psi_{1}$. Additionally, by $\mathrm{IH}, w_{1} \vDash \psi_{1} \Rightarrow w_{2} \vDash \psi_{1}$.

2. $w_{2} \in \operatorname{Words}(\varphi) \Rightarrow w_{1} \in \operatorname{Words}(\varphi)$

- Case 1: $w_{2} \vDash \psi_{2}$. Then, by $\mathrm{IH}, w_{1} \vDash \psi_{2}$.
- Case 2: $w_{2} \not \neq \psi_{2}$. Let k be the smallest index such that $w_{2}[k \ldots] \vDash \psi_{2}$ and $\forall 0 \leq i<k . w_{2}[i<\ldots] \vDash \psi_{1}$. $\Rightarrow w_{1}[k-1, \ldots] \vDash \psi_{2}$ and $\forall 1 \leq i<k-1 . w_{1}[i \ldots] \vDash \psi_{1}$.

Complexity for LTL to NBA

> For any LTL-formula φ (over $A P$) there exists an NBA \mathcal{A}_{φ} $$
\text { with } \operatorname{Words}(\varphi)=\mathcal{L}_{\omega}\left(\mathcal{A}_{\varphi}\right) \text { and }
$$ which can be constructed in time and space in $2 \mathcal{O}(|\varphi|)$

Justification complexity: next slide

Time and space complexity

- States GNBA \mathcal{G}_{φ} are elementary sets of formulae in closure (φ)
- sets B can be represented by bit vectors with single bit per subformula ψ of φ
- The number of states in \mathcal{G}_{φ} is bounded by $2^{|\operatorname{subf}(\varphi)|}$
- where $\operatorname{subf}(\varphi)$ denotes the set of all subformulae of φ
- $|\operatorname{subf}(\varphi)| \leq 2 \cdot|\varphi|$; so, the number of states in \mathcal{G}_{φ} is bounded by $2^{\mathcal{O}(|\varphi|)}$
- The number of accepting sets of \mathcal{G}_{φ} is bounded by $\mathcal{O}(|\varphi|)$
- The number of states in NBA \mathcal{A}_{φ} is thus bounded by

$$
2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|)=2^{\mathcal{O}(|\varphi|+\log |\varphi|)}=2^{\mathcal{O}(|\varphi|)}
$$

Lower bound

There exists a family of LTL formulas φ_{n} with $\left|\varphi_{n}\right|=\mathcal{O}(p o l y(n))$ such that every NBA $\mathcal{A}_{\varphi_{n}}$ for φ_{n} has at least 2^{n} states

Proof

Let $A P$ be non-empty, that is, $\left|2^{A P}\right| \geq 2$ and:

$$
\mathcal{L}_{n}=\left\{A_{1} \ldots A_{n} A_{1} \ldots A_{n} \sigma \mid A_{i} \subseteq A P \wedge \sigma \in\left(2^{A P}\right)^{\omega}\right\}, \quad \text { for } n \geq 0
$$

It follows $\mathcal{L}_{n}=$ Words $\left(\varphi_{n}\right)$ where $\varphi_{n}=\bigwedge_{a \in A P} \bigwedge_{0 \leq i<n}\left(O^{i} a \longleftrightarrow \bigcirc^{n+i} a\right)$ φ_{n} is an LTL formula of polynomial length: $\left|\varphi_{n}\right| \in \mathcal{O}(|A P| \cdot n)$
However, any NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A})=\mathcal{L}_{n}$ has at least 2^{n} states

Proof (cont'd)

Claim: any NBA \mathcal{A} for $\bigwedge_{a \in A P} \bigwedge_{0 \leq i<n}\left(\bigcirc^{i} a \longleftrightarrow \bigcirc^{n+i} a\right)$ has at least 2^{n} states

- Words of the form $A_{1} \ldots A_{n} A_{1} \ldots A_{n} \varnothing \varnothing \varnothing \ldots$ are accepted by \mathcal{A}
- \mathcal{A} thus has for every word $A_{1} \ldots A_{n}$ of length n, a state $q\left(A_{1} \ldots A_{n}\right)$, which can be reached from an initial state by consuming $A_{1} \ldots A_{n}$.
- From $q\left(A_{1} \ldots A_{n}\right)$, it is possible to visit an accept state infinitely often by accepting the suffix $A_{1} \ldots A_{n} \varnothing \varnothing \varnothing \ldots$
- If $A_{1} \ldots A_{n} \neq A_{1}^{\prime} \ldots A_{n}^{\prime}$ then

$$
A_{1} \ldots A_{n} A_{1}^{\prime} \ldots A_{n}^{\prime} \varnothing \varnothing \varnothing \ldots \notin \mathcal{L}_{n}=\mathcal{L}_{\omega}(\mathcal{A})
$$

- Therefore, the states $q\left(A_{1} \ldots A_{n}\right)$ are all pairwise different
- Given $\left|2^{A P}\right|$ possible sequences $A_{1} \ldots A_{n}$, NBA \mathcal{A} has $\geq\left(\left|2^{A P}\right|\right)^{n} \geq 2^{n}$ states

Complexity for LTL model checking

The time and space complexity of LTL model checking is in $\mathcal{O}\left(|T S| \cdot 2^{|\varphi|}\right)$

On-the-fly LTL model checking

- Idea: find a counter-example during the generation of $\operatorname{Reach}(T S)$ and $\mathcal{A}_{\neg \varphi}$
- exploit the fact that $\operatorname{Reach}(T S)$ and $\mathcal{A}_{\neg \varphi}$ can be generated in parallel
\Rightarrow Generate $\operatorname{Reach}\left(T S \otimes \mathcal{A}_{\neg \varphi}\right)$ "on demand"
- consider a new vertex only if no accepting cycle has been found yet
- only consider the successors of a state in $\mathcal{A}_{\neg \varphi}$ that match current state in TS
\Rightarrow Possible to find an accepting cycle without generating $\mathcal{A}_{\neg \varphi}$ entirely
- This on-the-fly scheme is adopted for example in the model checker SPIN

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete [Sistla \& Clarke 1985]

