Verification

Lecture 7

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Linear temporal logic

BNF grammar for LTL formulas over propositions $A P$ with $a \in A P$:

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

auxiliary temporal operators: $\diamond \phi \equiv \operatorname{true} \cup \phi$ and $\square \phi \equiv \neg \diamond \neg \phi$

REVIEW: LTL semantics

The LT-property induced by LTL formula φ over AP is:

$$
\begin{aligned}
& \operatorname{Words}(\varphi)=\left\{\sigma \in\left(2^{A P}\right)^{\omega} \mid \sigma \vDash \varphi\right\} \text {, where } \vDash \text { is the smallest relation satisfying: } \\
& \sigma \vDash \text { true } \\
& \sigma \vDash a \quad \text { iff } a \in A_{0} \text { (i.e., } A_{0} \vDash a \text {) } \\
& \sigma \vDash \varphi_{1} \wedge \varphi_{2} \text { iff } \sigma \vDash \varphi_{1} \text { and } \sigma \vDash \varphi_{2} \\
& \sigma \vDash \neg \varphi \quad \text { iff } \sigma \not \vDash \varphi \\
& \sigma \vDash \bigcirc \varphi \text { iff } \sigma[1 . .]=A_{1} A_{2} A_{3} \ldots \vDash \varphi \\
& \sigma \vDash \varphi_{1} \cup \varphi_{2} \quad \text { iff } \exists j \geq 0 . \sigma[j . .] \vDash \varphi_{2} \text { and } \sigma[i . .] \vDash \varphi_{1}, 0 \leq i<j
\end{aligned}
$$

for $\sigma=A_{0} A_{1} A_{2} \ldots$ we have $\sigma[i .]=.A_{i} A_{i+1} A_{i+2} \ldots$ is the suffix of σ from index i on

Semantics of $\square, \diamond, \square \diamond$ and $\diamond \square$

$$
\begin{array}{rlll}
\sigma & \vDash \diamond \varphi & \text { iff } & \exists j \geq 0 . \sigma[j . .] \vDash \varphi \\
\sigma & \vDash \square \varphi & \text { iff } & \forall j \geq 0 . \sigma[j . .] \vDash \varphi \\
\sigma & \vDash \triangleright \diamond \varphi & \text { iff } & \forall j \geq 0 . \exists i \geq j . \sigma[i \ldots] \vDash \varphi \\
\sigma & \vDash \diamond \square \varphi & \text { iff } & \exists j \geq 0 . \forall j \geq i . \sigma[j \ldots] \vDash \varphi
\end{array}
$$

LTL semantics

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

- For infinite path fragment π of $T S$:

$$
\pi \vDash \varphi \quad \text { iff } \quad \operatorname{trace}(\pi) \vDash \varphi
$$

- For state $s \in S$:

$$
s \vDash \varphi \quad \text { iff } \quad(\forall \pi \in \operatorname{Paths}(s) . \pi \vDash \varphi)
$$

- TS satisfies φ, denoted $T S \vDash \varphi$, if $\operatorname{Traces}(T S) \subseteq \operatorname{Words}(\varphi)$

Equivalence

LTL formulas ϕ, ψ are equivalent, denoted $\phi \equiv \psi$, if:

$$
\operatorname{Words}(\phi)=\operatorname{Words}(\psi)
$$

Duality and idempotence laws

$$
\begin{aligned}
& \text { Duality: } \\
& \neg \square \phi \equiv \diamond \neg \phi \\
& \neg \diamond \phi \equiv \square \neg \phi \\
& \neg \bigcirc \phi \equiv \bigcirc \neg \phi \\
& \text { Idempotency: } \\
& \square \square \phi \equiv \square \phi \\
& \diamond \diamond \phi \equiv \diamond \phi \\
& \phi \cup(\phi \cup \psi) \equiv \phi \cup \psi \\
& (\phi \cup \psi) \cup \psi \equiv \phi \cup \psi
\end{aligned}
$$

Absorption and distributive laws

$$
\text { Absorption: } \begin{aligned}
\diamond \square \diamond \phi & \equiv \square \diamond \phi \\
& \square \diamond \square \phi
\end{aligned}>\diamond \square \phi
$$

Distribution: $\bigcirc(\phi \cup \psi) \equiv(\bigcirc \phi) \cup(\bigcirc \psi)$

$$
\begin{aligned}
\diamond(\phi \vee \psi) & \equiv \diamond \phi \vee \diamond \psi \\
\square(\phi \wedge \psi) & \equiv \square \phi \wedge \square \psi
\end{aligned}
$$

$$
\begin{array}{ll}
\text { but } \ldots \ldots: \text { : } & \diamond(\phi \cup \psi) \quad \not \equiv \quad(\diamond \phi) \cup(\diamond \psi) \\
& \diamond(\phi \wedge \psi) \quad \not \equiv \diamond \phi \wedge \diamond \psi \\
& \square(\phi \vee \psi) \quad \not \equiv \quad \square \phi \vee \square \psi
\end{array}
$$

Distributive laws

$\diamond(a \wedge b) \not \equiv \diamond a \wedge \diamond b$ and $\square(a \vee b) \not \equiv \square a \vee \square b$

$$
\begin{aligned}
& T S \not \vDash \diamond(a \wedge b) \text { and } T S \vDash(\diamond a) \wedge(\diamond b) \\
& T S \neq(\square a) \vee(\square b) \text { and } T S \vDash \square(a \vee b)
\end{aligned}
$$

Expansion laws

$$
\text { Expansion: } \begin{aligned}
\phi \cup \psi & \equiv \psi \vee(\phi \wedge \bigcirc(\phi \cup \psi)) \\
\diamond \phi & \equiv \phi \vee \bigcirc \diamond \phi \\
\square \phi & \equiv \phi \wedge \bigcirc \square \phi
\end{aligned}
$$

Proof: $\operatorname{Words}(\phi \cup \psi) \subseteq \operatorname{Words}(\psi \vee(\phi \wedge \bigcirc(\phi \cup \psi)))$

- Let $A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\phi \cup \psi)$:
- $A_{0} A_{1} A_{2} \ldots \vDash \phi \cup \psi$.
- There exists a $k \geq 0$ such that
$A_{i} A_{i+1} A_{i+2} \ldots \vDash \phi$ for all $0 \leq i<k \quad$ and $\quad A_{k} A_{k+1} A_{k+2} \ldots \vDash \psi$.
- Case $1, k=0$:
- Then, $A_{0} A_{1} A_{2} \ldots \vDash \psi$ and thus $A_{0} A_{1} A_{2} \ldots \vDash \psi \vee \ldots$.
- Hence, $A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\psi \vee(\phi \wedge \bigcirc(\phi \cup \psi)))$.
- Case $2, k>0$:
- Then, $A_{0} A_{1} A_{2} \ldots \vDash \phi$ and $A_{1} A_{2} \ldots \vDash \phi \cup \psi$.
- Hence, $A_{0} A_{1} A_{2} \ldots \vDash \phi \wedge \bigcirc(\phi \cup \psi)$.
- Hence, $A_{0} A_{1} A_{2} \ldots \vDash \ldots \vee(\phi \wedge \bigcirc(\phi \cup \psi))$.
- Hence, $A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\psi \vee(\phi \wedge \bigcirc(\phi \cup \psi)))$.

Expansion for until

$P_{U}=\operatorname{Words}(\varphi \cup \psi)$ satisfies:

$$
P_{U}=\operatorname{Words}(\psi) \cup\left\{A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\varphi) \mid A_{1} A_{2} \ldots \in P_{U}\right\}
$$

and is the smallest LT-property P such that:

$$
\begin{equation*}
\operatorname{Words}(\psi) \cup\left\{A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\varphi) \mid A_{1} A_{2} \ldots \in P\right\} \subseteq P \tag{*}
\end{equation*}
$$

Proof: Words $(\varphi \cup \psi)$ is the smallest LT-prop. satisfying (*)

- Let P be any LT-property that satisfies (*). We show that Words $(\varphi \cup \psi) \subseteq P$.
- Let $B_{0} B_{1} B_{2} \ldots \in \operatorname{Words}(\varphi \cup \psi)$. Then there exists a $k \geq 0$ such that $B_{i} B_{i+1} B_{i+2} \ldots \in \operatorname{Words}(\varphi)$ for every $0 \leq i<k$ and $B_{k} B_{k+1} B_{k+2} \ldots \in \operatorname{Words}(\psi)$.
- We derive

$$
\begin{aligned}
& B_{k} B_{k+1} B_{k+2} \ldots \in P \\
& \text { because } B_{k} B_{k+1} B_{k+2} \ldots \in \operatorname{Words}(\psi) \text { and Words }(\psi) \subseteq P . \\
\Rightarrow & B_{k-1} B_{k} B_{k+1} B_{k+2} \ldots \in P \\
& \text { because if } A_{0} A_{1} A_{2} \ldots \in \text { Words }(\varphi) \text { and } A_{1} A_{2} \ldots \in P \text { then } A_{0} A_{1} A_{2} \ldots \in P . \\
\Rightarrow & B_{k-2} B_{k-1} B_{k} B_{k+1} B_{k+2} \ldots \in P \text {, analogously } \\
\Rightarrow & \ldots \\
\Rightarrow & B_{0} B_{1} B_{2} \ldots \in P .
\end{aligned}
$$

Weak until

- The weak-until (or: unless) operator: $\varphi \mathrm{W} \psi \stackrel{\text { def }}{=}(\varphi \cup \psi) \vee \square \varphi$
- as opposed to until, $\varphi \mathrm{W} \psi$ does not require a ψ-state to be reached
- Until U and weak until W are dual:

$$
\begin{aligned}
\neg(\varphi \cup \psi) & \equiv(\varphi \wedge \neg \psi) \mathrm{W}(\neg \varphi \wedge \neg \psi) \\
\neg(\varphi \mathrm{W} \psi) & \equiv(\varphi \wedge \neg \psi) \cup(\neg \varphi \wedge \neg \psi)
\end{aligned}
$$

- Until and weak until are equally expressive:
- $\square \psi \equiv \psi \mathrm{W}$ false and $\varphi \mathrm{U} \psi \equiv(\varphi \mathrm{W} \psi) \wedge \neg \square \neg \psi$
- Until and weak until satisfy the same expansion law
- but until is the smallest, and weak until the largest solution!

Expansion for weak until

$$
P_{\mathrm{W}}=\operatorname{Words}(\varphi \mathrm{W} \psi) \text { satisfies: }
$$

$$
P_{\mathrm{W}}=\operatorname{Words}(\psi) \cup\left\{A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\varphi) \mid A_{1} A_{2} \ldots \in P_{\mathrm{W}}\right\}
$$

and is the greatest LT-property P such that:

$$
\operatorname{Words}(\psi) \cup\left\{A_{0} A_{1} A_{2} \ldots \in \operatorname{Words}(\varphi) \mid A_{1} A_{2} \ldots \in P\right\} \supseteq P \quad(* *)
$$

Proof: Words $(\varphi \mathrm{W} \psi)$ is the greatest LT-prop. satisfying (**)

- Let P be any LT-property that satisfies $\left.{ }^{* *}\right)$. We show that $P \subseteq \operatorname{Words}(\varphi \mathrm{~W} \psi)$.
- Let $B_{0} B_{1} B_{2} \ldots \notin$ Words $(\varphi \mathrm{W} \psi)$. Then there exists a $k \geq 0$ such that $B_{i} B_{i+1} B_{i+2} \ldots \vDash \varphi \wedge \neg \psi$ for every $0 \leq i<k$ and $B_{k} B_{k+1} B_{k+2} \ldots \vDash \neg \varphi \wedge \neg \psi$.
- We derive

$$
\begin{aligned}
& B_{k} B_{k+1} B_{k+2} \ldots \notin P \\
& \text { because } B_{k} B_{k+1} B_{k+2} \ldots \notin \text { Words }(\psi) \text { and } \\
& B_{k} B_{k+1} B_{k+2} \ldots \notin \text { Words }(\varphi) \text { and } \\
\Rightarrow & B_{k-1} B_{k} B_{k+1} B_{k+2} \ldots \notin P \\
& \text { because } B_{k} B_{k+1} B_{k+2} \ldots \notin P \text { and } B_{k-1} B_{k} B_{k+1} B_{k+2} \ldots \notin \text { Words }(\psi) \\
\Rightarrow & B_{k-2} B_{k-1} B_{k} B_{k+1} B_{k+2} \ldots \notin P \text {, analogously } \\
\Rightarrow & \ldots \\
\Rightarrow & B_{0} B_{1} B_{2} \ldots \notin P .
\end{aligned}
$$

(Weak-until) positive normal form

- Canonical form for LTL-formulas
- negations only occur adjacent to atomic propositions
- disjunctive and conjunctive normal form is a special case of PNF
- for each LTL-operator, a dual operator is needed
- e.g., $\neg(\varphi \cup \psi) \equiv((\varphi \wedge \neg \psi) \cup(\neg \varphi \wedge \neg \psi)) \vee \square(\varphi \wedge \neg \psi)$
- that is: $\neg(\varphi \cup \psi) \equiv(\varphi \wedge \neg \psi) \mathrm{W}(\neg \varphi \wedge \neg \psi)$
- For $a \in A P$, the set of LTL formulas in PNF is given by:
$\varphi::=$ true \mid false $|a| \neg a\left|\varphi_{1} \wedge \varphi_{2}\right| \varphi_{1} \vee \varphi_{2}|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2} \mid \varphi_{1} \mathrm{~W} \varphi_{2}$
- \square and \diamond are also permitted: $\square \varphi \equiv \varphi \mathrm{W}$ false and $\diamond \varphi=\operatorname{true} \mathrm{U} \varphi$

(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

$$
\begin{array}{ll}
\neg \text { true } & \leadsto \text { false } \\
\neg \neg \varphi & \leadsto \varphi \\
\neg(\varphi \wedge \psi) & \leadsto \neg \varphi \vee \neg \psi \\
\neg(\varphi \vee \psi) & \leadsto \neg \varphi \wedge \neg \psi \\
\neg \bigcirc \varphi & \leadsto \neg \neg \varphi \\
\neg(\varphi \cup \psi) & \leadsto(\varphi \wedge \neg \psi) \mathrm{W}(\neg \varphi \wedge \neg \psi) \\
\neg \diamond \varphi & \leadsto \square \neg \varphi \\
\neg \square \varphi & \leadsto \diamond \neg \varphi
\end{array}
$$

but an exponential growth in size is possible

Example

Consider the LTL-formula $\neg \square((a \cup b) \vee \bigcirc c)$
This formula is not in PNF, but can be transformed into PNF as follows:

$$
\begin{aligned}
& \neg \square((a \cup b) \vee \bigcirc c) \\
\equiv & \diamond \neg((a \cup b) \vee \bigcirc c) \\
\equiv & \diamond(\neg(a \cup b) \wedge \neg \bigcirc c) \\
\equiv & \diamond((a \wedge \neg b) \mathrm{W}(\neg a \wedge \neg b) \wedge \bigcirc \neg c)
\end{aligned}
$$

can the exponential growth in size be avoided?

The release operator

- The release operator: $\varphi R \psi \stackrel{\text { def }}{=} \neg(\neg \varphi U \neg \psi)$
- ψ always holds, a requirement that is released as soon as φ holds
- Until U and release R are dual:

$$
\begin{aligned}
\varphi \cup \psi & \equiv \neg(\neg \varphi \mathrm{R} \neg \psi) \\
\varphi \mathrm{R} \psi & \equiv \neg(\neg \varphi \cup \neg \psi)
\end{aligned}
$$

- Until and release are equally expressive:
- $\square \psi \equiv$ false $\mathrm{R} \psi$ and $\varphi \cup \psi \equiv \neg(\neg \varphi \mathrm{R} \neg \psi)$
- Release satisfies the expansion law:
$\varphi \mathrm{R} \psi \equiv \psi \wedge(\varphi \vee \bigcirc(\varphi \mathrm{R} \psi))$

Semantics of release

$$
\sigma \vDash \varphi \mathrm{R} \psi
$$

iff
(* definition of R *)

$$
\neg \exists j \geq 0 .(\sigma[j . .] \vDash \neg \psi \wedge \forall i<j . \sigma[i . .] \vDash \neg \varphi)
$$

iff
(* semantics of negation *)

$$
\neg \exists j \geq 0 .(\sigma[j . .] \not \vDash \psi \wedge \forall i<j . \sigma[i . .] \not \vDash \varphi)
$$

iff
(* duality of \exists and \forall *)
$\forall j \geq 0 . \neg(\sigma[j ..] \not \vDash \psi \wedge \forall i<j . \sigma[i ..] \not \vDash \varphi)$
iff (* de Morgan's law *)

$$
\forall j \geq 0 .(\neg(\sigma[j . .] \not \vDash \psi) \vee \neg \forall i<j . \sigma[i . .] \not \vDash \varphi)
$$

(* semantics of negation *)

$$
\forall j \geq 0 .(\sigma[j . .] \vDash \psi \vee \exists i<j . \sigma[i . .] \vDash \varphi)
$$

iff

$$
\forall j \geq 0 . \sigma[j . .] \vDash \psi \text { or } \exists i \geq 0 .(\sigma[i . .] \vDash \varphi \wedge \forall k \leq i . \sigma[k . .] \vDash \psi)
$$

Positive normal form (revisited)

For $a \in A P, L T L$ formulas in PNF are given by:

$$
\varphi::=\text { true } \mid \text { false }|a| \neg a\left|\varphi_{1} \wedge \varphi_{2}\right| \varphi_{1} \vee \varphi_{2}|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2} \mid \varphi_{1} \mathrm{R} \varphi_{2}
$$

PNF in linear size

For any LTL-formula φ there exists an equivalent LTL-formula ψ in PNF with $|\psi|=\mathcal{O}(|\varphi|)$

Transformations:

$$
\begin{array}{ll}
\neg \text { true } & \leadsto \text { false } \\
\neg \neg \varphi & \leadsto \varphi \\
\neg(\varphi \wedge \psi) & \leadsto \neg \varphi \vee \neg \psi \\
\neg(\varphi \vee \psi) & \leadsto \neg \varphi \wedge \neg \psi \\
\neg \bigcirc \varphi & \leadsto \bigcirc \neg \varphi \\
\neg(\varphi \cup \psi) & \leadsto \neg \varphi R \neg \psi \\
\neg \diamond \varphi & \leadsto \square \neg \varphi \\
\neg \square \varphi & \leadsto \diamond \neg \varphi
\end{array}
$$

Fairness in LTL

Process one starves

REVIEW: Action-based fairness constraints

For $T S=(S, A c t, \rightarrow, I, A P, L)$ without terminal states, $A \subseteq A c t$, and infinite execution fragment $\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} \ldots$ of $T S$:

1. ρ is unconditionally A-fair whenever: $\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A$ infinitely often A is taken
2. ρ is strongly A-fair whenever:

$$
\underbrace{\left(\forall k \geq 0 . \exists j \geq k . A c t\left(s_{j}\right) \cap A \neq \varnothing\right)}_{\text {infinitely often } A \text { is enabled }} \Longrightarrow \underbrace{\left(\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A\right)}_{\text {infinitely often } A \text { is taken }}
$$

3. ρ is weakly A-fair whenever:

$$
\underbrace{\left(\exists k \geq 0 . \forall j \geq k . A c t\left(s_{j}\right) \cap A \neq \varnothing\right)}_{A \text { is eventually always enabled }} \Longrightarrow \underbrace{\left(\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A\right)}_{\text {infinitely often } A \text { is taken }}
$$

REVIEW: Fairness assumptions

- A fairness assumption for Act is a triple

$$
\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)
$$

with $\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }} \in 2^{\text {Act }}$.

- Execution ρ is \mathcal{F}-fair if:
- it is unconditionally A-fair for all $A \in \mathcal{F}_{\text {ucond, }}$, and
- it is strongly A-fair for all $A \in \mathcal{F}_{\text {strong }}$, and
- it is weakly A-fair for all $A \in \mathcal{F}_{\text {weak }}$
- \mathcal{F} is realizable for $T S$ if for any $s \in \operatorname{Reach}(T S):$ FairPaths $_{\mathcal{F}}(s) \neq \varnothing$
fairness assumption $\left(\varnothing, \mathcal{F}^{\prime}, \varnothing\right)$ denotes strong fairness;

$$
\left(\varnothing, \varnothing, \mathcal{F}^{\prime}\right) \text { weak, etc. }
$$

REVIEW: Fair paths and traces

- Let fairness assumption $\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)$
- Path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \ldots$ is \mathcal{F}-fair if
- there exists an \mathcal{F}-fair execution $s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} s_{2} \ldots$
- FairPaths $\mathcal{F}_{\mathcal{F}}(s)$ denotes the set of \mathcal{F}-fair paths that start in s
- FairPaths $_{\mathcal{F}}(T S)=\cup_{s \in l}$ FairPaths $_{\mathcal{F}}(s)$
- Trace σ is \mathcal{F}-fair if there exists an \mathcal{F}-fair execution ρ with $\operatorname{trace}(\rho)=\sigma$
- FairTraces $_{\mathcal{F}}(s)=\operatorname{trace}^{\left(\text {FairPaths }_{\mathcal{F}}(s)\right)}$
- FairTraces $_{\mathcal{F}}(T S)=\operatorname{trace}^{\left(\text {FairPaths }_{\mathcal{F}}(T S)\right)}$

REVIEW: Fair satisfaction

- TS satisfies LT-property P:

$$
T S \vDash P \quad \text { if and only if } \quad \operatorname{Traces}(T S) \subseteq P
$$

- TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

$$
T S \vDash_{\mathcal{F}} P \quad \text { if and only if } \quad \text { Fair }^{T r a c e s_{\mathcal{F}}}(T S) \subseteq P
$$

- TS satisfies the LT property P if all its fair observable behaviors are admissible

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

$$
\text { ufair }=\square \diamond \Psi
$$

2. A strong LTL fairness condition is of the form:

$$
\text { sfair }=\square \diamond \Phi \longrightarrow \square \diamond \Psi
$$

3. A weak LTL fairness constraint is of the form:

$$
\text { wfair }=\diamond \square \Phi \longrightarrow \square \diamond \Psi
$$

Φ stands for "something is enabled"; Ψ for "something is taken"

LTL fairness assumption

- LTL fairness assumption = conjunction of LTL fairness
constraints
- the fairness constraints are of any arbitrary type
- Strong fairness assumption: sfair $=\wedge_{0<i \leqslant k}\left(\square \diamond \Phi_{i} \longrightarrow \square \diamond \Psi_{i}\right)$
- compare this to an action-based strong fairness constraint over A with $|A|=k$
- General format: fair $=$ ufair \wedge sfair \wedge wfair
- Rules of thumb:
- strong (or unconditional) fairness assumptions are useful for solving contentions
- weak fairness suffices for resolving nondeterminism resulting from interleaving

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

$$
\begin{aligned}
& \text { FairPaths }_{\text {fair }}(s)=\{\pi \in \text { Paths }(s) \mid \pi \vDash \text { fair }\} \\
& \text { FairTraces }_{\text {fair }}(s)=\left\{\operatorname{trace}(\pi) \mid \pi \in \text { FairPaths }_{\text {fair }}(s)\right\}
\end{aligned}
$$

For LTL-formula φ, and LTL fairness assumption fair:

$$
\begin{aligned}
s \vDash_{\text {fair }} \varphi & \text { if and only if } \\
T S \vDash_{\text {fair }} \varphi & \text { if and only if }
\end{aligned} \forall s_{0} \in I . s_{0} \vDash_{\text {fair }} \varphi \text { faths } \text { fair }(s) . \pi \vDash \varphi \quad \text { and }
$$

$\vDash_{\text {fair }}$ is the fair satisfaction relation for LTL; \vDash the standard one for LTL

Randomized arbiter

$T S_{1}| |$ Arbiter || $T S_{2} \neq \square \diamond$ crit $_{1}$
But: $T S_{1} \|$ Arbiter $\| T S_{2} \vDash_{\text {fair }} \square \diamond$ crit $_{1} \wedge \square \diamond$ crit $_{2}$ with
fair $=\square \diamond$ head $\wedge \square \diamond$ tail

Semaphore-based mutual exclusion

State- versus action-based fairness

- From action-based to (state-based) LTL fairness assumptions:
- premise: deduce from state label the possible enabled actions
- conclusion: deduce from state label the just executed actions
- General scheme:
- copy each non-initial state s and keep track of action used to enter s
- copy $\langle s, \alpha\rangle$ means s has been entered via action α
\Rightarrow Any action-based fairness assumption can be transformed into an equivalent LTL fairness assumption
- the reverse, however, does not hold

Turning action-based into state-based fairness

For $T S=(S, A c t, \rightarrow, I, A P, L)$ let $T S^{\prime}=\left(S^{\prime}, A c t \cup\{\right.$ begin $\left.\}, \rightarrow^{\prime}, I^{\prime}, A P^{\prime}, L^{\prime}\right)$ with:

- $S^{\prime}=I \times\{$ begin $\} \cup S \times$ Act and $I^{\prime}=I \times\{$ begin $\}$
- \rightarrow^{\prime} is the smallest relation satisfying:

$$
\frac{s \xrightarrow{\alpha} s^{\prime}}{\langle s, \beta\rangle \xrightarrow{\alpha}\left\langle s^{\prime}, \alpha\right\rangle} \quad \text { and } \quad \frac{s_{0} \xrightarrow{\alpha} s s_{0} \in I}{\left\langle s_{0}, \text { begin }\right\rangle \xrightarrow{\alpha}\langle s, \alpha\rangle}
$$

- $A P^{\prime}=A P \cup\{\operatorname{enabled}(\alpha)$, taken $(\alpha) \mid \alpha \in A c t\}$
- labeling function:

> - $L^{\prime}\left(\left\langle s_{0}\right.\right.$, begin $\left.\rangle\right)=L\left(s_{0}\right) \cup\left\{\right.$ enabled $\left.(\beta) \mid \beta \in \operatorname{Act}\left(s_{0}\right)\right\}$
> - $L^{\prime}(\langle s, \alpha\rangle)=L(s) \cup\{\operatorname{taken}(\alpha)\} \cup\{\operatorname{enabled}(\beta) \mid \beta \in \operatorname{Act}(s)\}$

$$
\text { it follows: } \operatorname{Traces}_{A P}(T S)=\operatorname{Traces}_{A P}\left(T S^{\prime}\right)
$$

State- versus action-based fairness

- Strong A-fairness is described by the LTL fairness assumption:

$$
\operatorname{sfair}_{A}=\square \diamond \bigvee_{\alpha \in A} \operatorname{enabled}(\alpha) \rightarrow \square \diamond \bigvee_{\alpha \in A} \operatorname{taken}(\alpha)
$$

- The fair traces of $T S$ and its action-based variant $T S^{\prime}$ are equal:

$$
\begin{aligned}
& \left\{\operatorname{trace}_{A P}(\pi) \mid \pi \in \operatorname{Paths}(T S), \pi \text { is } \mathcal{\mathcal { F }} \text {-fair }\right\} \\
= & \left\{\operatorname{trace}_{A P}\left(\pi^{\prime}\right) \mid \pi^{\prime} \in \operatorname{Paths}\left(T S^{\prime}\right), \pi^{\prime} \vDash \text { fair }\right\}
\end{aligned}
$$

- For every LT-property P (over $A P): T S \vDash \mathcal{F}^{P}$ iff $T S^{\prime} \vDash_{\text {fair }} P$

Reducing $\vDash_{\text {fair }}$ to \vDash

For:

- transition system TS without terminal states
- LTL formula φ, and
- LTL fairness assumption fair
it holds:

$$
T S \vDash_{\text {fair }} \varphi \quad \text { if and only if } \quad T S \vDash(\text { fair } \rightarrow \varphi)
$$

verifying an LTL-formula under a fairness assumption can be done using standard verification algorithms for LTL

LTL Model Checking

LTL model-checking problem

The following decision problem:

> Given finite transition system TS and LTL-formula φ : yields "yes" if $T S \vDash \varphi$, and "no" (plus a counterexample) if $T S \nLeftarrow \varphi$

A first attempt

$$
\begin{aligned}
& T S \vDash \varphi \quad \text { if and only if } \quad \operatorname{Traces}(T S) \subseteq \underbrace{\operatorname{Words}(\varphi)}_{\mathcal{L}_{\omega}\left(\mathcal{A}_{\varphi}\right)} \\
& \\
& \text { if and only if } \quad \operatorname{Traces}(T S) \cap \mathcal{L}_{\omega}\left(\overline{\mathcal{A}_{\varphi}}\right)=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { but complementation of NBA is exponential }}{\text { if } \mathcal{A} \text { has } n \text { states, } \overline{\mathcal{A}} \text { has } c^{((n \log n)} \text { states in worst case }}
\end{aligned}
$$

use the fact that $\mathcal{L}_{\omega}\left(\overline{\mathcal{A}_{\varphi}}\right)=\mathcal{L}_{\omega}\left(\mathcal{A}_{\neg \varphi}\right)$!

Observation

$T S \vDash \varphi \quad$ if and only if $\quad \operatorname{Traces}(T S) \subseteq \operatorname{Words}(\varphi)$
if and only if $\quad \operatorname{Traces}(T S) \cap\left(\left(2^{A P}\right)^{\omega} \backslash \operatorname{Words}(\varphi)\right)=\varnothing$
if and only if $\quad \operatorname{Traces}(T S) \cap \underbrace{\operatorname{Words}(\neg \varphi)}_{\mathcal{L}_{\omega}\left(\mathcal{A}_{\neg \varphi}\right)}=\varnothing$
if and only if $\quad T S \otimes \mathcal{A}_{\neg \varphi} \vDash \diamond \square \neg F$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking

