Verification

Lecture 6

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Büchi automata

A <u>nondeterministic Büchi automaton</u> (NBA) A is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

REVIEW: NBA and ω -regular languages

The class of languages accepted by NBA

agrees with the class of ω -regular languages

(1) any ω -regular language is recognized by an NBA (2) for any NBA 4 the language $C_{\rm eff}(4)$ is a regular

(2) for any NBA A, the language $\mathcal{L}_{\omega}(A)$ is ω -regular

REVIEW: For any ω -regular language there is an NBA

• How to construct an NBA for the *w*-regular expression:

```
\mathbf{G} = \mathbf{E}_1 \cdot \mathbf{F}_1^{\omega} + \ldots + \mathbf{E}_n \cdot \mathbf{F}_n^{\omega} ?
```

where E_i and F_i are regular expressions over alphabet Σ ; $\varepsilon \notin F_i$

- Rely on operations for NBA that mimic operations on ω-regular expressions:
 - (1) for NBA A_1 and A_2 there is an NBA accepting $\mathcal{L}_{\omega}(A_1) \cup \mathcal{L}_{\omega}(A_2)$
 - (2) for any regular language \mathcal{L} with $\varepsilon \notin \mathcal{L}$ there is an NBA accepting \mathcal{L}^{ω}
 - (3) for regular language L and NBA A' there is an NBA accepting L.L_w(A')

REVIEW: NBA accept ω -regular languages

For each NBA \mathcal{A} : $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular

Proof:

• Given an NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$, we define, for each pair $s, s' \in Q$, the regular language $W_{s,s'}$:

$$W_{s,s'} = \{u \in \Sigma^* \mid \mathsf{NFA}(Q, \Sigma, \delta, \{s\}, \{s'\}) \text{ accepts } u\}$$

$$\blacktriangleright \mathcal{L}_{\omega}(\mathcal{A}) = \bigcup_{s \in Q_0, s' \in F} W_{s,s'} \cdot W_{s',s'}^{\omega}$$

- Let $E_{s,s'}$ be the regular expression defining the language $W_{s,s'}$.
- The corresponding ω-regular expression

$$\begin{split} & E_{s_1,s_1'}.E_{s_1',s_1'}^{\omega} + E_{s_2,s_1'}.E_{s_1',s_1'}^{\omega} + \dots \\ & \text{defines } \mathcal{L}_{\omega}(\mathcal{A}). \end{split}$$

Checking non-emptiness

$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$ if and only if

 $\exists q_0 \in Q_0. \exists q \in F. \exists w \in \Sigma^*. \exists v \in \Sigma^+. q \in \delta^*(q_0, w) \land q \in \delta^*(q, v)$

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in time $\mathcal{O}(|A|)$

Non-blocking NBA

- NBA \mathcal{A} is <u>non-blocking</u> if $\delta(q, A) \neq \emptyset$ for all q and $A \in \Sigma$
 - for each input word there exists an infinite run
- For each NBA A there exists a non-blocking NBA trap(A) with:
 - $|trap(\mathcal{A})| = \mathcal{O}(|\mathcal{A}|) \text{ and } \mathcal{A} \equiv trap(\mathcal{A})$
- For $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ let $trap(\mathcal{A}) = (Q', \Sigma, \delta', Q_0, F)$ with:

Deterministic BA

Büchi automaton \mathcal{A} is called <u>deterministic</u> if

$$|Q_0| \le 1$$
 and $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$
DBA \mathcal{A} is called total if

 $|Q_0| = 1$ and $|\delta(q, A)| = 1$ for all $q \in Q$ and $A \in \Sigma$

total DBA provide unique runs for each input word

Example DBA for LT property

NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts $\mathcal{L}_{\omega}((A+B)^*B^{\omega})$

Proof

- Assume that $L = \mathcal{L}((A + B)^* B^\omega)$ is recognized by the deterministic Büchi automaton \mathcal{A} .
- Since $b^{\omega} \in L$, there is a run

```
r_0 = s_{0,0}s_{0,1}s_{0,2},...
with s_{0,n_0} \in F for some n_0 \in \mathbb{N}.
```

• Similarly, $b^{n_0}ab^{\omega} \in L$ and there must be a run $r_1 = s_{0,0}s_{0,1}s_{0,2}\dots s_{0,n_0}s_{1,0}s_{1,1}s_{1,2}\dots$

with $s_{1,n_1} \in F$

- Repeating this argument, there is a word $b^{n_0}ab^{n_1}ab^{n_2}a...$ accepted by A.
- This contradicts $L = \mathcal{L}_{\omega}(\mathcal{A})$.

The need for nondeterminism

let $\{a\} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{\}$ and $B = \{a\}$ "eventually forever a" equals $(A + B)^* B^\omega = (\{\} + \{a\})^* \{a\}^\omega$

Generalized Büchi automata

- NBA are as expressive as ω-regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, and Streett automata
 - generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct acceptance criterion
 - ▶ a GNBA requires to visit several sets $F_1, ..., F_k$ ($k \ge 0$) infinitely often
 - ▶ for *k*=0, all runs are accepting
 - for k=1 this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
 - but they are equally expressive as NBA

Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \ldots, F_k\}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that: • $a_0 \in O_0$ and $a_i \xrightarrow{A_i} a_{i+1}$ for all 0 < i
- ▶ Run $q_0 q_1 \dots$ is <u>accepting</u> if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many *i*
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- ► The <u>accepted language</u> of G:
 - $\mathcal{L}_{\omega}(\mathcal{G}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \}$
- GNBA \mathcal{G} and \mathcal{G}' are <u>equivalent</u> if $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$

Example

A GNBA for the property "both processes are infinitely often in their critical section"

From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where ${\mathcal F}$ denotes the set of acceptance sets in ${\mathcal G}$

Example

Product of Büchi automata

The product construction for finite automata does not work:

$$\mathcal{L}_{\omega}(\mathcal{A}_{1}) = \mathcal{L}_{\omega}(\mathcal{A}_{2}) = \{A^{\omega}\}, \text{ but } \mathcal{L}_{\omega}(\mathcal{A}_{1} \otimes \mathcal{A}_{2}) = \emptyset$$

Product of Büchi automata

Intersection

For GNBA \mathcal{G}_1 and \mathcal{G}_2 there exists a GNBA \mathcal{G} with $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}_1) \cap \mathcal{L}_{\omega}(\mathcal{G}_2)$ and $|\mathcal{G}| = \mathcal{O}(|\mathcal{G}_1| + |\mathcal{G}_2|)$

Facts about Büchi automata

- They are as expressive as ω-regular languages
- They are closed under various operations and also under \cap
 - deterministic automaton -A accepts $-\mathcal{L}_{\omega}(A)$
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
 - this can be done in $\mathcal{O}(|\mathcal{A}|)$

Verifying ω -regular properties

REVIEW: Regular safety properties

Safety property P_{safe} over AP is <u>regular</u> if its set of bad prefixes is a regular language over 2^{AP}

REVIEW: Verifying regular safety properties

Let *TS* over *AP* and NFA A with alphabet 2^{AP} as before, regular safety property P_{safe} over *AP* such that $\mathcal{L}(A)$ is the set of bad prefixes of P_{safe}

The following statements are equivalent: (a) $TS \models P_{safe}$ (b) $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$ (c) $TS \otimes \mathcal{A} \models P_{inv(\mathcal{A})}$

where
$$P_{inv(A)}$$
 = "always" $\neg F$

ω -regular properties

LT property *P* over *AP* is $\underline{\omega}$ -regular if *P* is an ω -regular language over 2^{*AP*}

Basic idea of the algorithm

 $TS \notin P$ if and only if $Traces(TS) \notin P$

if and only if $Traces(TS) \cap (2^{AP})^{\omega} \setminus P \neq \emptyset$

if and only if $Traces(TS) \cap \overline{P} \neq \emptyset$

if and only if $Traces(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$

if and only if $TS \otimes A \models$ "eventually forever" $\neg F$

persistence property

where A is an NBA accepting the complement property $\overline{P} = (2^{AP})^{\omega} \setminus P$

Persistence property

A <u>persistence property</u> over *AP* is an LT property $P_{pers} \subseteq (2^{AP})^{\omega}$ "eventually forever Φ " for some propositional logic formula Φ over *AP*:

$$P_{pers} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \mid \exists i \ge 0, \forall j \ge i, A_j \models \Phi \right\}$$

 Φ is called a persistence (or state) condition of P_{pers}

" Φ is an invariant after a while"

Example persistence property

let $\{a\} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{\}$ and $B = \{a\}$ "eventually forever a" equals $(A + B)^* B^\omega = (\{\} + \{a\})^* \{a\}^\omega$

Synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$$
 where

►
$$S' = S \times Q$$
, $AP' = Q$ and $L'(\langle s, q \rangle) = \{q\}$

→' is the smallest relation defined by: s → t ∧ q → t ∧ q → p / (s,q) → (t,p)

I' = { (s₀, q) | s₀ ∈ I ∧ ∃q₀ ∈ Q₀, q₀ → (t,p) / (t,p) }

Verifying ω -regular properties

Let:

- TS be a transition system over AP
- *P* be an ω -regular property over *AP*, and
- \mathcal{A} a non-blocking NBA such that $\mathcal{L}_{\omega}(\mathcal{A}) = \overline{P}$.

The following statements are equivalent: (a) $TS \models P$ (b) $Traces(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$ (c) $TS \otimes \mathcal{A} \models P_{pers(\mathcal{A})}$

where
$$P_{pers(A)}$$
 = "eventually forever $\neg F$ "

 \Rightarrow checking ω -regular properties is reduced to persistence checking!

Infinitely often green?

Infinitely often green?

Persistence checking

- Aim: establish whether $TS \notin P_{pers} =$ "eventually forever Φ "
- Let state *s* be reachable in *TS* and $s \neq \Phi$
 - TS has an initial path fragment that ends in s
- If s is on a cycle
 - this path fragment can be continued by an infinite path
 - by traversing the cycle containing s infinitely often
- ⇒ *TS* may visit the $\neg \Phi$ -state *s* infinitely often and so: *TS* \neq *P*_{pers}
 - If no such s is found then: $TS \models P_{pers}$

Cycle detection

How to check for a reachable cycles containing a $\neg \Phi$ -state?

- Alternative 1:
 - compute the strongly connected components (SCCs) in G(TS)
 - check whether one such SCC is reachable from an initial state
 - ► . . . that contains a ¬Φ-state
 - "eventually forever Φ " is refuted if and only if such SCC is found
- Alternative 2:
 - use a nested depth-first search
 - ⇒ more adequate for an on-the-fly verification algorithm
 - \Rightarrow easier for generating counterexamples

let's have a closer look into this by first dealing with two-phase DFS

A two-phase depth first-search

1. Determine all $\neg \Phi$ -states that are reachable from some initial state

this is performed by a standard depth-first search

- 2. For each reachable $\neg \Phi$ -state, check whether it belongs to a cycle
 - start a depth-first search in s
 - check for all states reachable from s whether there is an "backward" edge to s
 - Time complexity: $\Theta(N \cdot |\Phi| \cdot (N+M))$
 - where N is the number of states and M the number of transitions
 - fragments reachable via $K \neg \Phi$ -states are searched K times

Two-phase depth first-search

Require: finite transition system *TS* without terminal states, and proposition Φ

Ensure: "yes" if $TS \models$ "eventually forever Φ ", otherwise "no".

set of states $R := \emptyset$; $R_{\neg \Phi} := \emptyset$; {set of reachable states resp. $\neg \Phi$ -states} **stack of** states $U := \varepsilon$; {DFS-stack for first DFS, initial empty} **set of** states $T := \emptyset$; {set of visited states for the cycle check} **stack of** states $V := \varepsilon$; {DFS-stack for the cycle check}

for all $s \in I \setminus R$ do visit(s); od {phase one} for all $s \in R_{\neg \Phi}$ do

 $T := \emptyset; V := \varepsilon; \{\text{phase two}\}$

if cycle_check(s) then return "no" {s belongs to a cycle}
end for

return "yes" {none of the $\neg \Phi$ -states belongs to a cycle}

Find $\neg \Phi$ -states

process visit (state s) push(s, U); {push s on the stack} $R := R \cup \{s\}; \{\text{mark } s \text{ as reachable}\}$ repeat s' := top(U);if $Post(s') \subseteq R$ then pop(U);if $s' \not\models \Phi$ then $R_{\neg \Phi} := R_{\neg \Phi} \cup \{s'\}$; fi else let $s'' \in Post(s') \setminus R$ push(s'', U); $R := R \cup \{s''\}$; {state s'' is a new reachable state} end if until $(U = \varepsilon)$ endproc

Cycle detection

```
process boolean cycle_check(state s)
 boolean cycle_found := false; {no cycle found yet}
push(s, V); T := T \cup \{s\}; \{push s on the stack\}
 repeat
    s' := top(V); {take top element of V}
    if s \in Post(s') then
       cycle_found := true; {if s \in Post(s'), a cycle is found }
       push(s, V); {push s on the stack}
    else
       if Post(s') \setminus T \neq \emptyset then
           let s'' \in Post(s') \setminus T;
           push(s'', V); T := T \cup \{ s'' \}; \{ push an unvisited successor of s' \}
           else pop(V); {unsuccessful cycle search for s'}
       end if
    end if
 until ((V = \varepsilon) \lor cycle found)
 return cycle_found endproc
```

Nested depth-first search

- Idea: perform the two depth-first searches in an <u>interleaved</u> way
 - the outer DFS serves to encounter all reachable $\neg \Phi$ -states
 - the inner DFS seeks for backward edges leading to the $\neg\Phi\text{-state}$
- Nested DFS
 - on full expansion of $\neg \Phi$ -state s in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s not visited in the inner DFS yet
 - no backward edge found to s? continue the outer DFS (look for next ¬Φ state)
- Counterexample generation: DFS stack concatenation
 - ► stack *U* for the outer DFS = path fragment from $s_0 \in I$ to *s* (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

The outer DFS (1)

Require: transition system TS without terminal states, and proposition Φ **Ensure:** "yes" if $TS \models$ "eventually forever Φ ", otherwise "no" plus counterexample

```
set of states R := \emptyset; {set of visited states in the outer DFS}
stack of states U := \varepsilon; {stack for the outer DFS}
set of states T := \emptyset; {set of visited states in the inner DFS}
stack of states V := \varepsilon; {stack for the inner DFS}
boolean cycle_found := false;
```

```
while (I \setminus R \neq \emptyset \land \neg cycle\_found) do
   let s \in I \setminus R; {explore the reachable}
    reachable_cycle(s); {fragment with outer DFS}
```

end while

```
if ¬cycle_found then
```

```
return ("yes") {TS \models "eventually forever \Phi"}
```

مادم

```
return ("no", reverse(V.U)) {stack contents yield a counterexample}
end if
```

The outer DFS (2)

```
process reachable_cycle (state s)
push(s, U); {push s on the stack}
R \coloneqq R \cup \{s\};
repeat
   s' := top(U);
   if Post(s') \setminus R \neq \emptyset then
       let s'' \in Post(s') \setminus R;
       push(s'', U); {push the unvisited successor of s'}
       R := R \cup \{ s'' \}; \{ and mark it reachable \}
   else
       pop(U); {outer DFS finished for s'}
       if s' \neq \Phi then
          cycle_found := cycle_check(s'); {proceed with the inner}
          {DFS in state s'}
       end if
   end if
until ((U = \varepsilon) \lor cycle_found) {stop when stack for the outer}
```

```
{DFS is empty or cycle found} endproc
```

Correctness of nested DFS

Let:

- > TS be a finite transition system over AP without terminal states and
- *P*_{pers} a persistence property

The nested DFS algorithm yields "no" if and only if $TS \notin P_{pers}$

Time complexity

The worst-case time complexity of nested DFS is in $O((N+M) + N \cdot |\Phi|)$

where *N* is # reachable states in *TS*, and *M* is # transitions in *TS*

Linear-time Temporal Logic

Syntax

modal logic over infinite sequences [Pnueli 1977]

- Propositional logic
 - ▶ a ∈ AP
 - $\neg \phi$ and $\phi \land \psi$
- Temporal operators
 - $\bigcirc \phi$
 - ► φUψ

atomic proposition negation and conjunction

next state fulfills ϕ ϕ holds Until a ψ -state is reached

linear temporal logic is a logic for describing LT properties

Derived operators

$$\phi \lor \psi \equiv \neg (\neg \phi \land \neg \psi)$$

$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

$$\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$$

$$\phi \oplus \psi \equiv (\phi \land \neg \psi) \lor (\neg \phi \land \psi)$$

true
$$\equiv \phi \lor \neg \phi$$

false
$$\equiv \neg \text{true}$$

$$\diamond \phi \equiv \text{true U} \phi \quad \text{"sometimes in the future"}$$

$$\Box \phi \equiv \neg \diamond \neg \phi \quad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones. \neg and \bigcirc bind equally strong. U takes precedence over \land , \lor , and \rightarrow

Intuitive semantics

Traffic light properties

• Once red, the light cannot become green immediately:

$$\Box(red \Rightarrow \neg \bigcirc green)$$

- ► The light becomes green eventually: <> green
- Once red, the light always becomes green eventually: \Box (red $\Rightarrow \Diamond$ green)
- Once red, the light always becomes green eventually after being yellow for some time inbetween:

 $\Box(\textit{red} \rightarrow \bigcirc (\textit{red} \, U\,(\textit{yellow} \land \bigcirc (\textit{yellow} \, U\,\textit{green}))))$

Semantics over words

The LT-property induced by LTL formula φ over AP is:

 $Words(\varphi) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid \sigma \models \varphi \right\}$, where \models is the smallest relation satisfying:

 $\sigma \models \text{ true}$ $\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$ $\sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$ $\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \notin \varphi$ $\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma [1..] = A_1 A_2 A_3 \ldots \models \varphi$ $\sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \ge 0. \ \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \ 0 \le i < j$

for $\sigma = A_0A_1A_2...$ we have $\sigma[i..] = A_iA_{i+1}A_{i+2}...$ is the suffix of σ from index *i* on

Semantics over paths and states

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over *AP*.

• For infinite path fragment π of *TS*:

$$\pi \vDash \varphi$$
 iff $trace(\pi) \vDash \varphi$

• For state $s \in S$:

 $s \vDash \varphi$ iff $(\forall \pi \in Paths(s), \pi \vDash \varphi)$

► *TS* satisfies φ , denoted *TS* $\models \varphi$, if *Traces*(*TS*) \subseteq *Words*(φ)

Semantics for transition systems

 $TS \vDash \varphi$

iff (* transition system semantics *) $Traces(TS) \subseteq Words(\varphi)$ iff (* definition of \vDash for LT-properties *) $TS \vDash Words(\varphi)$ iff (* Definition of $Words(\varphi)$ *) $\pi \vDash \varphi$ for all $\pi \in Paths(TS)$

iff (* semantics of \models for states *)

 $s_0 \models \varphi$ for all $s_0 \in I$.

Example

Semantics of negation

For paths, it holds $\pi \vDash \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$

But: $TS \neq \varphi$ and $TS \models \neg \varphi$ are <u>not</u> equivalent in general It holds: $TS \models \neg \varphi$ implies $TS \neq \varphi$. Not always the reverse! Note that:

$$TS \neq \varphi \quad \text{iff } Traces(TS) \notin Words(\varphi)$$
$$\text{iff } Traces(TS) \smallsetminus Words(\varphi) \neq \emptyset$$
$$\text{iff } Traces(TS) \cap Words(\neg \varphi) \neq \emptyset$$

TS neither satisfies φ nor $\neg \varphi$ if there are paths π_1 and π_2 in *TS* such that $\pi_1 \vDash \varphi$ and $\pi_2 \vDash \neg \varphi$

Example

A transition system for which $TS \neq \Diamond a$ and $TS \neq \neg \Diamond a$