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REVIEW: Büchi automata

A nondeterministic Büchi automaton (NBA)A is a tuple (Q, Σ, δ,Q0 , F)
where:

▸ Q is a finite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F ⊆ Q is a set of accept (or: final) states

The size ofA, denoted ∣A∣, is the number of states and transitions inA:

∣A∣ = ∣Q∣ +∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



REVIEW: NBA and ω-regular languages

The class of languages accepted by NBA

agrees with the class of ω-regular languages

(1) any ω-regular language is recognized by an NBA

(2) for any NBAA, the language Lω(A) is ω-regular



REVIEW: For any ω-regular language there is an NBA

▸ How to construct an NBA for the ω-regular expression:

G = E1.F
ω
1 + . . . + En.F

ω
n ?

where Ei and Fi are regular expressions over alphabet Σ; ε /∈ Fi
▸ Rely on operations for NBA that mimic operations on ω-regular
expressions:

(1) for NBAA1 andA2 there is an NBA acceptingLω(A1)∪Lω(A2)
(2) for any regular language Lwith ε ∉ L there is an NBA acceptingLω

(3) for regular language L and NBAA′ there is an NBA acceptingL.Lω(A′)



REVIEW: NBA accept ω-regular languages

For each NBAA: Lω(A) is ω-regular

Proof:

▸ Given an NBAA = (Q, Σ, δ,Q0, F), we define, for each pair

s, s′ ∈ Q, the regular languageWs,s′ :

Ws,s′ = {u ∈ Σ∗ ∣ NFA (Q, Σ, δ, {s}, {s′}) accepts u}

▸ Lω(A) = ⋃
s∈Q0 ,s′∈F

Ws,s′ .W
ω
s′ ,s′

▸ Let Es,s′ be the regular expression defining the languageWs,s′ .

▸ The corresponding ω-regular expression

Es1 ,s′1 .E
ω
s′1 ,s

′

1
+ Es2 ,s′1 .E

ω
s′1 ,s

′

1
+ . . .

defines Lω(A).



Checking non-emptiness

Lω(A) ≠ ∅ if and only if

∃q0 ∈ Q0. ∃q ∈ F. ∃w ∈ Σ∗. ∃v ∈ Σ+. q ∈ δ∗(q0,w) ∧ q ∈ δ∗(q, v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

there is a reachable accept state on a cycle

The emptiness problem for NBAA can be solved in timeO(∣A∣)



Non-blocking NBA

▸ NBAA is non-blocking if δ(q,A) ≠ ∅ for all q and A ∈ Σ
▸ for each input word there exists an infinite run

▸ For each NBAA there exists a non-blocking NBA trap(A)with:
▸ ∣trap(A)∣ = O(∣A∣) and A ≡ trap(A)

▸ ForA = (Q, Σ, δ,Q0, F) let trap(A) = (Q′, Σ, δ′,Q0, F)with:
▸ Q′ = Q ∪ {qtrap }where {qtrap } /∈ Q
▸ δ′(q,A) = { δ(q,A) ∶ if q ∈ Q and δ(q,A) /= ∅{qtrap} ∶ otherwise



Deterministic BA

Büchi automatonA is called deterministic if

∣Q0∣ ≤ 1 and ∣δ(q,A)∣ ≤ 1 for all q ∈ Q and A ∈ Σ

DBAA is called total if

∣Q0∣ = 1 and ∣δ(q,A)∣ = 1 for all q ∈ Q and A ∈ Σ

total DBA provide unique runs for each input word



Example DBA for LT property

a ∧ b

¬a ∧ b
¬a ∧ b a ∧ b



NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts Lω((A + B)∗Bω)



Proof

▸ Assume that L = L((A + B)∗Bω) is recognized by the

deterministic Büchi automatonA.

▸ Since bω ∈ L, there is a run
r0 = s0,0s0,1s0,2, . . .

with s0,n0 ∈ F for some n0 ∈ N.
▸ Similarly, bn0abω ∈ L and there must be a run

r1 = s0,0s0,1s0,2 . . . s0,n0s1,0s1,1s1,2 . . .

with s1,n1 ∈ F
▸ Repeating this argument, there is a word

bn0abn1abn2a . . .

accepted byA.

▸ This contradicts L = Lω(A).



The need for nondeterminism

q0 q1 q2
a ¬a

true a true

let {a} = AP, i.e., 2AP = {A, B}where A = {} and B = {a}
’’eventually forever a’’ equals (A + B)∗Bω = ({} + {a})∗{a}ω



Generalized Büchi automata

▸ NBA are as expressive as ω-regular languages

▸ Variants of NBA exist that are equally expressive
▸ Muller, Rabin, and Streett automata
▸ generalized Büchi automata (GNBA)

▸ GNBA are like NBA, but have a distinct acceptance criterion
▸ a GNBA requires to visit several sets F1 , . . . , Fk (k ≥ 0) infinitely

often
▸ for k=0, all runs are accepting
▸ for k=1 this boils down to an NBA

▸ GNBA are useful to relate temporal logic and automata
▸ but they are equally expressive as NBA



Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ,Q0 ,F)where:
▸ Q is a finite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F = { F1, . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted ∣G∣, is the number of states and transitions in G:
∣G∣ = ∣Q∣ +∑

q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



Language of a GNBA

▸ GNBA G = (Q, Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

▸ A run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

▸ q0 ∈ Q0 and qi
Ai−−−→qi+1 for all 0 ≤ i

▸ Run q0 q1 . . . is accepting if for all F ∈ F : qi ∈ F for infinitely
many i

▸ σ ∈ Σω is accepted by G if there exists an accepting run for σ

▸ The accepted language of G:
▸ Lω(G) = {σ ∈ Σω ∣ there exists an accepting run for σ in G }

▸ GNBA G and G′ are equivalent if Lω(G) = Lω(G′)



Example

q0q1 q2

true

crit2

truecrit1

true

A GNBA for the property ’’both processes are infinitely often in their

critical section’’



From GNBA to NBA

For any GNBA G there exists an NBAAwith:

Lω(G) = Lω(A) and ∣A∣ = O(∣G∣ ⋅ ∣F ∣)
whereF denotes the set of acceptance sets in G



Example

⟨q0, 1⟩⟨q1, 1⟩ ⟨q2, 1⟩

true

crit2

true

crit1

⟨q1, 2⟩ ⟨q0, 2⟩ ⟨q2, 2⟩

true true

crit1

true crit2

true



Product of Büchi automata

The product construction for finite automata does not work:

A

A

r1 r2

A

A

q1 q2 (q2, r1)

(q2, r2)(q1, r2)

A
A

A1

A2

A1 ⊗A2

(q1, r1)

Lω(A1) = Lω(A2) = {Aω }, but Lω(A1 ⊗A2) = ∅



Product of Büchi automata

(q1, r1, 1) (q1, r1, 2) (q2, r1, 1) (q2, r1, 2)

(q1, r2, 2)(q1, r2, 1)(q2, r2, 2)(q2, r2, 1)

A

A

r1 r2

A

A

q1 q2

A1

A2

A1 ⊗A2



Intersection

For GNBA G1 and G2 there exists a GNBA G with

Lω(G) = Lω(G1) ∩Lω(G2) and ∣G∣ = O(∣G1∣ + ∣G2∣)



Facts about Büchi automata

▸ They are as expressive as ω-regular languages

▸ They are closed under various operations and also under ∩
▸ deterministic automaton −A accepts −Lω(A)

▸ Nondeterministic BA are more expressive

than deterministic BA

▸ Emptiness check = check for reachable recurrent accept state
▸ this can be done inO(∣A∣)



Verifying ω-regular properties



REVIEW: Regular safety properties

Safety property Psafe over AP is regular

if its set of bad prefixes is a regular language over 2AP



REVIEW: Verifying regular safety properties

Let TS over AP and NFAAwith alphabet 2AP as before, regular

safety property Psafe over AP such that L(A) is the set of bad
prefixes of Psafe

The following statements are equivalent:

(a) TS ⊧ Psafe

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS⊗A ⊧ Pinv(A)

where Pinv(A) = ‘‘always’’ ¬ F



ω-regular properties

LT property P over AP is ω-regular

if P is an ω-regular language over 2AP



Basic idea of the algorithm

TS /⊧ P if and only if Traces(TS) /⊆ P

if and only if Traces(TS) ∩ (2AP)ω ∖ P /= ∅
if and only if Traces(TS) ∩ P /= ∅
if and only if Traces(TS) ∩Lω(A) /= ∅
if and only if TS⊗A ⊧ ‘‘eventually forever’’ ¬F´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

persistence property

whereA is an NBA accepting the complement property P = (2AP)ω ∖ P



Persistence property

A persistence property over AP is an LT property Ppers ⊆ (2AP)ω
‘‘eventually foreverΦ’’

for some propositional logic formulaΦ over AP:

Ppers = {A0A1A2 . . . ∈ (2AP)ω ∣ ∃i ≥ 0. ∀j ≥ i. Aj ⊧ Φ}

Φ is called a persistence (or state) condition of Ppers

‘‘Φ is an invariant after a while’’



Example persistence property

q0 q1 q2
a ¬a

true a true

let {a} = AP, i.e., 2AP = {A, B}where A = {} and B = {a}
’’eventually forever a’’ equals (A + B)∗Bω = ({} + {a})∗{a}ω



Synchronous product

For transition system TS = (S,Act,→, I,AP, L)without terminal states

andA = (Q, Σ, δ,Q0, F) a non-blocking NBA with Σ = 2AP, let:

TS⊗A = (S′,Act,→ ′, I′,AP′, L′) where

▸ S′ = S ×Q, AP′ = Q and L′(⟨s, q⟩) = {q}
▸ → ′ is the smallest relation defined by:

s α
−−→ t ∧ q

L(t)
−−−−→p

⟨s, q⟩ α
−−→′ ⟨t, p⟩

▸ I′ = { ⟨s0, q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)
−−−−−→q}



Verifying ω-regular properties
Let:

▸ TS be a transition system over AP

▸ P be an ω-regular property over AP, and

▸ A a non-blocking NBA such that Lω(A) = P.

The following statements are equivalent:

(a) TS ⊧ P

(b) Traces(TS) ∩ Lω(A) = ∅

(c) TS⊗A ⊧ Ppers(A)

where Ppers(A) = ‘‘eventually forever ¬ F’’

⇒ checking ω-regular properties is reduced to persistence checking!



Infinitely often green?

{green}{ red}
s1s0

q0 q2

true

q1

¬green green

true¬green

{q0 }
⟨s0 , q0⟩

{q1 }
⟨s0 , q1⟩

{q2 }
⟨s0 , q2⟩

⟨s1 , q0⟩
{q0 } {q1 }

⟨s1 , q1⟩
{q2 }
⟨s1 , q2⟩



Infinitely often green?

s1

{green}
s0

{ red}

⟨s0 , q0⟩ {q0 } ⟨s0 , q1⟩ {q1 } ⟨s0 , q2⟩ {q2 }

⟨s1 , q0⟩
{q0 }

⟨s1 , q1⟩
{q1 }

⟨s1 , q2⟩
{q2 }

s2

∅

{q0 }
⟨s2 , q0⟩

{q1 }
⟨s2 , q1⟩

{q2 }
⟨s2 , q2⟩



Persistence checking

▸ Aim: establish whether TS /⊧ Ppers = ‘‘eventually foreverΦ’’

▸ Let state s be reachable in TS and s /⊧ Φ

▸ TS has an initial path fragment that ends in s

▸ If s is on a cycle
▸ this path fragment can be continued by an infinite path
▸ . . . . . . by traversing the cycle containing s infinitely often

⇒ TSmay visit the ¬Φ-state s infinitely often and so: TS /⊧ Ppers

▸ If no such s is found then: TS ⊧ Ppers



Cycle detection

How to check for a reachable cycles containing a ¬Φ-state?

▸ Alternative 1:
▸ compute the strongly connected components (SCCs) in G(TS)
▸ check whether one such SCC is reachable from an initial state
▸ . . . that contains a ¬Φ-state
▸ ‘‘eventually foreverΦ’’ is refuted if and only if such SCC is found

▸ Alternative 2:
▸ use a nested depth-first search⇒ more adequate for an on-the-fly verification algorithm⇒ easier for generating counterexamples

let’s have a closer look into this by first dealing with two-phase DFS



A two-phase depth first-search

1. Determine all ¬Φ-states that are reachable from some initial
state

this is performed by a standard depth-first search

2. For each reachable ¬Φ-state, check whether it belongs to a
cycle

▸ start a depth-first search in s
▸ check for all states reachable from swhether there is an

‘‘backward’’ edge to s

▸ Time complexity: Θ(N⋅∣Φ∣⋅(N+M))
▸ whereN is the number of states andM the number of transitions
▸ fragments reachable via K ¬Φ-states are searched K times



Two-phase depth first-search

Require: finite transition system TSwithout terminal states, and

propositionΦ

Ensure: ’’yes’’ if TS ⊧ ’’eventually foreverΦ’’, otherwise ’’no’’.

set of states R ∶= ∅; R¬Φ ∶= ∅; {set of reachable states resp. ¬Φ-states}

stack of states U ∶= ε; {DFS-stack for first DFS, initial empty}

set of states T ∶= ∅; {set of visited states for the cycle check}

stack of states V ∶= ε; {DFS-stack for the cycle check}

for all s ∈ I ∖ R do visit(s); od {phase one}

for all s ∈ R¬Φ do

T ∶= ∅; V ∶= ε; {phase two}
if cycle_check(s) then return ’’no’’ {s belongs to a cycle}

end for

return ’’yes’’ {none of the ¬Φ-states belongs to a cycle}



Find ¬Φ-states

process visit (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s}; {mark s as reachable}

repeat

s′ ∶= top(U);
if Post(s′) ⊆ R then

pop(U);
if s′ /⊧ Φ then R¬Φ ∶= R¬Φ ∪ { s

′ }; fi
else

let s′′ ∈ Post(s′) ∖ R

push(s′′ ,U);
R ∶= R ∪ { s′′ }; {state s′′ is a new reachable state}

end if

until (U = ε) endproc

this is standard DFS checking for ¬Φ-states



Cycle detection

process boolean cycle_check(state s)

boolean cycle_found ∶= false; {no cycle found yet}

push(s, V); T ∶= T ∪ { s}; {push s on the stack}

repeat

s′ ∶= top(V); {take top element of V}

if s ∈ Post(s′) then
cycle_found ∶= true; {if s ∈ Post(s′), a cycle is found }

push(s, V); {push s on the stack}

else

if Post(s′) ∖ T ≠ ∅ then

let s′′ ∈ Post(s′) ∖ T ;

push(s′′ , V); T ∶= T ∪ { s′′ }; {push an unvisited successor of s′}

else pop(V); {unsuccessful cycle search for s′}

end if

end if

until ((V = ε) ∨ cycle_found)
return cycle_found endproc



Nested depth-first search

▸ Idea: perform the two depth-first searches in an interleaved
way

▸ the outer DFS serves to encounter all reachable ¬Φ-states
▸ the inner DFS seeks for backward edges leading to the ¬Φ-state

▸ Nested DFS
▸ on full expansion of ¬Φ-state s in the outer DFS, start inner DFS
▸ in inner DFS, visit all states reachable from s not visited in the

inner DFS yet
▸ no backward edge found to s? continue the outer DFS (look for

next ¬Φ state)

▸ Counterexample generation: DFS stack concatenation
▸ stack U for the outer DFS = path fragment from s0 ∈ I to s (in

reversed order)
▸ stack V for the inner DFS = a cycle from state s to s (in reversed

order)



The outer DFS (1)

Require: transition system TSwithout terminal states, and propositionΦ

Ensure: ’’yes’’ if TS ⊧ ’’eventually foreverΦ’’, otherwise ’’no’’ plus counterexample

set of states R ∶= ∅; {set of visited states in the outer DFS}

stack of states U ∶= ε; {stack for the outer DFS}

set of states T ∶= ∅; {set of visited states in the inner DFS}

stack of states V ∶= ε; {stack for the inner DFS}

boolean cycle_found ∶= false;

while (I ∖ R ≠ ∅ ∧ ¬cycle_found) do
let s ∈ I ∖ R; {explore the reachable}

reachable_cycle(s); {fragment with outer DFS}

end while

if ¬cycle_found then
return (’’yes’’) {TS ⊧ ’’eventually foreverΦ’’}

else

return (’’no’’, reverse(V .U)) {stack contents yield a counterexample}

end if



The outer DFS (2)

process reachable_cycle (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s};
repeat

s′ ∶= top(U);
if Post(s′) ∖ R ≠ ∅ then

let s′′ ∈ Post(s′) ∖ R;

push(s′′ ,U); {push the unvisited successor of s′}

R ∶= R ∪ { s′′ }; {and mark it reachable}

else

pop(U); {outer DFS finished for s′}

if s′ /⊧ Φ then

cycle_found ∶= cycle_check(s′); {proceed with the inner}

{DFS in state s′}

end if

end if

until ((U = ε) ∨ cycle_found) {stop when stack for the outer}

{DFS is empty or cycle found} endproc



Correctness of nested DFS

Let:

▸ TS be a finite transition system over APwithout terminal states and

▸ Ppers a persistence property

The nested DFS algorithm yields ’’no’’ if and only if TS /⊧ Ppers



Time complexity

The worst-case time complexity of nested DFS is in

O((N+M) + N⋅∣Φ ∣)
where N is# reachable states in TS, andM is# transitions in TS



Linear-time Temporal Logic



Syntax

modal logic over infinite sequences [Pnueli 1977]

▸ Propositional logic
▸ a ∈ AP atomic proposition
▸ ¬ϕ and ϕ ∧ ψ negation and conjunction

▸ Temporal operators
▸ ◯ϕ next state fulfills ϕ
▸ ϕUψ ϕ holds Until a ψ-state is reached

linear temporal logic is a logic for describing LT properties



Derived operators

ϕ ∨ ψ ≡ ¬ (¬ϕ ∧ ¬ψ)
ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ⇒ ϕ)
ϕ ⊕ ψ ≡ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)
true ≡ ϕ ∨ ¬ϕ

false ≡ ¬ true

◇ϕ ≡ trueU ϕ ‘‘sometimes in the future’’

◻ϕ ≡ ¬ ◇ ¬ϕ ‘‘from now on forever’’

precedence order: the unary operators bind stronger than the binary ones.

¬ and◯ bind equally strong. U takes precedence over ∧, ∨, and→



Intuitive semantics

a

atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step◯a

a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b

until aUb

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a

eventually◇a

¬a ¬a a arbitrary

. . .

a

always ◻a

a a a a

. . .



Traffic light properties

▸ Once red, the light cannot become green immediately:

◻ (red ⇒ ¬◯green)
▸ The light becomes green eventually:◇green

▸ Once red, the light always becomes green eventually:

◻ (red ⇒ ◇ green)
▸ Once red, the light always becomes green eventually after

being yellow for some time inbetween:

◻(red →◯ (redU (yellow ∧ ◯ (yellowUgreen))))



Semantics over words

The LT-property induced by LTL formula φ over AP is:

Words(φ) = {σ ∈ (2AP)ω ∣ σ ⊧ φ},where ⊧ is the smallest relation satisfying:

σ ⊧ true

σ ⊧ a iff a ∈ A0 (i.e., A0 ⊧ a)
σ ⊧ φ1 ∧ φ2 iff σ ⊧ φ1 and σ ⊧ φ2

σ ⊧ ¬φ iff σ /⊧ φ

σ ⊧ ◯φ iff σ[1..] = A1A2A3 . . . ⊧ φ

σ ⊧ φ1 Uφ2 iff ∃j ≥ 0. σ[j..] ⊧ φ2 and σ[i..] ⊧ φ1, 0 ≤ i < j

for σ = A0A1A2 . . . we have σ[i..] = AiAi+1Ai+2 . . . is the suffix of σ from index i on



Semantics over paths and states

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal

states, and let φ be an LTL-formula over AP.

▸ For infinite path fragment π of TS:

π ⊧ φ iff trace(π) ⊧ φ

▸ For state s ∈ S:

s ⊧ φ iff (∀π ∈ Paths(s). π ⊧ φ)

▸ TS satisfies φ, denoted TS ⊧ φ, if Traces(TS) ⊆Words(φ)



Semantics for transition systems

TS ⊧ φ

iff (* transition system semantics *)

Traces(TS) ⊆Words(φ)

iff (* definition of ⊧ for LT-properties *)

TS ⊧Words(φ)

iff (* Definition ofWords(φ) *)
π ⊧ φ for all π ∈ Paths(TS)

iff (* semantics of ⊧ for states *)

s0 ⊧ φ for all s0 ∈ I .



Example

{a, b}

s1

{a, b}

s2

{a}

s3



Semantics of negation

For paths, it holds π ⊧ φ if and only if π /⊧ ¬φ since:

Words(¬φ) = (2AP)ω ∖Words(φ) .

But: TS /⊧ φ and TS ⊧ ¬φ are not equivalent in general

It holds: TS ⊧ ¬φ implies TS /⊧ φ. Not always the reverse!

Note that:

TS /⊧ φ iff Traces(TS) /⊆Words(φ)

iff Traces(TS) ∖Words(φ) /= ∅

iff Traces(TS) ∩Words(¬φ) /= ∅ .

TS neither satisfies φ nor ¬φ if there are

paths π1 and π2 in TS such that π1 ⊧ φ and π2 ⊧ ¬φ



Example

{a}

s1

∅

s0

∅

s2

A transition system for which TS /⊧◇a and TS /⊧ ¬◇ a


