
Verification

Lecture 5

Bernd Finkbeiner

Peter Faymonville

Michael Gerke

REVIEW: Safety

▸ Safety properties ≈ ‘‘nothing bad should happen’’ [Lamport 1977]

▸ Typical safety property: mutual exclusion property
▸ the bad thing (having > 1 process in the critical section) never

occurs

▸ Another typical safety property is deadlock freedom

⇒ These properties are in fact invariants
▸ An invariant is an LT property

▸ that is given by a conditionΦ for the states
▸ and requires thatΦ holds for all reachable states
▸ e.g., for mutex propertyΦ ≡ ¬crit1 ∨ ¬crit2

REVIEW: Safety properties and closures

LT property P over AP is a safety property

if and only if closure(P) = P

REVIEW: Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) = (2AP)∗

▸ A liveness property is an LT property
▸ that does not rule out any prefix

▸ Liveness properties are violated in ‘‘infinite time’’
▸ whereas safety properties are violated in finite time
▸ finite traces are of no use to decide whether P holds or not
▸ any finite prefix can be extended such that the resulting infinite

trace satisfies P

REVIEW: A non-safety and non-liveness property

‘‘the machine provides infinitely often beer

after initially providing sprite three times in a row’’

▸ This property consists of two parts:
▸ it requires beer to be provided infinitely often

⇒ as any finite trace fulfills this, it is a liveness property
▸ the first three drinks it provides should all be sprite

⇒ bad prefix = one of first three drinks is beer; this is a safety

property

▸ Property is thus a conjunction of a safety and a liveness

property

does this apply to all such properties?

REVIEW: Decomposition theorem

For any LT property P over AP there exists

a safety property Psafe and a liveness property Plive

(both over AP) such that:

P = Psafe ∩ Plive

Proposal: P = closure(P)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Psafe

∩ (P ∪ ((2AP)ω ∖ closure(P)))
´¹¹¸¹¹¹¶

=Plive

Regular properties

Finite automata
A nondeterministic finite automaton (NFA)A is a tuple (Q, Σ, δ,Q0 , F)
where:

▸ Q is a finite set of states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ Q0 ⊆ Q a set of initial states

▸ F ⊆ Q is a set of accept (or: final) states

q0 q1 q2

A

B

B

A

B

Size of an NFA

The size ofA, denoted ∣A∣, is the number of states and transitions inA:

∣A∣ = ∣Q∣ +∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣

Language of an automaton

▸ NFAA = (Q, Σ, δ,Q0, F) and word w = A1 . . .An ∈ Σ∗
▸ A run for w inA is a finite sequence q0 q1 . . . qn such that:

▸ q0 ∈ Q0 and qi
Ai+1−−−−→qi+1 for all 0 ≤ i < n

▸ Run q0 q1 . . . qn is accepting if qn ∈ F
▸ w ∈ Σ∗ is accepted byA if there exists an accepting run for w

▸ The accepted language ofA:

L(A) = {w ∈ Σ∗ ∣ there exists an accepting run for w inA }

▸ NFAA andA′ are equivalent if L(A) = L(A′)

Accepted language revisited

Extend the transition function δ to δ
∗ ∶ Q × Σ∗ → 2Q by:

δ
∗(q, ε) = {q} and δ

∗(q,A) = δ(q,A)

δ
∗(q,A1A2 . . .An) = ⋃p∈δ(q,A1) δ

∗(p,A2 . . .An)

δ
∗(q,w) = set of states reachable from q for the wordw

Then: L(A) = {w ∈ Σ∗ ∣ δ∗(q0,w) ∩ F /= ∅ for some q0 ∈ Q0}

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)

Intersection

▸ Let NFAAi = (Qi , Σ, δi ,Q0,i , Fi), with i=1, 2
▸ The product automaton

A1⊗A2 = (Q1 ×Q2, Σ, δ,Q0,1 ×Q0,2, F1 × F2)

where δ is defined by:

q1
A−−→1 q

′
1 ∧ q2

A−−→2 q
′
2

(q1, q2) A−−→ (q′1, q′2)
▸ Well-known result: L(A1⊗A2) = L(A1)∩L(A2)

Total NFA

AutomatonA is called deterministic if

∣Q0∣ ≤ 1 and ∣δ(q,A)∣ ≤ 1 for all q ∈ Q and A ∈ Σ

DFAA is called total if

∣Q0∣ = 1 and ∣δ(q,A)∣ = 1 for all q ∈ Q and A ∈ Σ

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each

input word

Determinization

For NFAA = (Q, Σ, δ,Q0, F) letAdet = (2Q, Σ, δdet ,Q0, Fdet)with:

Fdet = {Q′ ⊆ Q ∣ Q′ ∩ F /= ∅}

and the total transition function δdet ∶ 2Q × Σ → 2Q is defined by:

δdet(Q′,A) = ⋃
q∈Q′

δ(q,A)

Adet is a total DFA and, for allw ∈ Σ∗: δ∗det(Q0 ,w) = ⋃q0∈Q0
δ
∗(q0 ,w)

Thus: L(Adet) = L(A)

Determinization

{q0 } {q0, q1 }

{q0, q2 } {q0 , q1 , q2 }

A

B

B

A

B

A

A

B

a deterministic finite automaton accepting L((A + B)∗B(A + B))

Facts about finite automata

▸ They are as expressive as regular languages

▸ They are closed under ∩ and complementation
▸ NFAA⊗ B (= cross product) accepts L(A) ∩ L(B)
▸ Total DFAA (= swap all accept and normal states) accepts

L(A) = Σ∗ ∖L(A)
▸ They are closed under determinization (= removal of choice)

▸ although at an exponential cost.....

▸ L(A) = ∅? = check for reachable accept state inA
▸ this can be done using a simple depth-first search

▸ For regular language L there is a unique minimal DFA

accepting L

Peterson’s banking system

Person Left behaves as follows:

while true {

.

rq ∶ b1 , x = true, 2;

wt ∶ wait until(x == 1 ∣∣ ¬b2) {

cs ∶ . . .@accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {

.

rq ∶ b2 , x = true, 1;

wt ∶ wait until(x == 2 ∣∣ ¬b1) {

cs ∶ . . .@accountR . . .}

b2 = false;

.

}

Is the banking system safe?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank

account?

‘‘always ¬(@accountL ∧ @accountR)’’

Is the banking system safe?

▸ Safe = at most one person may have access to the account

▸ Unsafe: two have access to the account simultaneously
▸ unsafe behaviour can be characterized by bad prefix
▸ alternatively (in this case) by the finite automaton:

@accountL ∧@accountR

¬(@accountL
∧@accountR)

▸ Checking safety: Traces(System) ∩ BadPref(Psafe) = ∅?
▸ intersection, complementation and emptiness of languages . . .

Regular safety properties

Safety property Psafe over AP is regular

if its set of bad prefixes is a regular language over 2AP

every invariant is regular

Problem statement

Let

▸ Psafe be a regular safety property over AP

▸ A an NFA recognizing the bad prefixes of Psafe
▸ assume that ε ∉ L(A)
⇒ otherwise all finite words over 2AP are bad prefixes

▸ TS a finite transition system (over AP) without terminal states

How to establish whether TS ⊧ Psafe?

Basic idea of the algorithm

TS ⊧ Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

if and only if Tracesfin(TS) ∩ L(A) = ∅

if and only if TS⊗A ⊧ ‘‘always’’Φ to be proven

But this amounts to invariant checking on TS⊗A
⇒ checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

For transition system TS = (S,Act,→, I,AP, L)without terminal states

andA = (Q, Σ, δ,Q0, F) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS⊗A = (S′,Act,→ ′, I′,AP′, L′) where

▸ S′ = S ×Q, AP′ = Q and L′(⟨s, q⟩) = {q}

▸ → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−−→p

⟨s, q⟩ α−−→′ ⟨t, p⟩
▸ I′ = { ⟨s0, q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0

L(s0)−−−−−→q}

without loss of generality it may be assumed that TS⊗A has no terminal states

Example product

red

{ red }

yellow

{ yellow }

red/yellow

{ red, yellow }

green

∅

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow ∨ red ∧ yellow

⟨green, q0⟩

{q0}

⟨red/yellow, q0⟩

{q0}

⟨yellow, q1⟩

{q1}

⟨red, q0⟩

{q0}

yellow

Verification of regular safety properties

Let TS over AP and NFAAwith alphabet 2AP as before, regular

safety property Psafe over AP such that L(A) is the set of bad
prefixes of Psafe.

The following statements are equivalent:

(a) TS ⊧ Psafe

(b) Tracesfin(TS) ∩ L(A) = ∅
(c) TS⊗A ⊧ Pinv(A)

where Pinv(A) = ⋀q∈F ¬q

Counterexamples

For each initial path fragment ⟨s0 , q1⟩ . . . ⟨sn , qn+1⟩ of TS⊗A:
q1 , . . . , qn /∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)

´¹¹¹¸¹¹¶
bad prefix for Psafe

∈ L(A)

Verification algorithm

Require: finite transition system TS and regular safety property Psafe
Ensure: true if TS ⊧ Psafe. Otherwise false plus a counterexample for Psafe.

Let NFAA (with accept states F) be such that L(A) = BadPref(Psafe);
Construct the product transition system TS⊗A;
Check the invariant Pinv(A) with proposition ¬F = ⋀q∈F ¬q on TS⊗A

if TS⊗A ⊧ Pinv(A) then
return true

else

Determine initial path fragment ⟨s0 , q1⟩ . . . ⟨sn , qn+1⟩ of TS⊗Awith

qn+1 ∈ F
return (false, s0 s1 . . . sn)

end if

Time complexity

The time and space complexity of checking a regular safety property Psafe

against transition system TS is in:

O(∣TS∣ ⋅ ∣A∣)
whereA is an NFA recognizing the bad prefixes of Psafe

Can time complexity be improved?

The safety property Psafe is regular

if and only if

the set of minimal bad prefixes for Psafe is regular

BadPref(Psafe) is regular if and only ifMinBadPref(Psafe) is regular
⇒ use automaton for minimal bad prefixes in product construction

Büchi Automata

Peterson’s banking system

Person Left behaves as follows:

while true {

.

rq ∶ b1 , x = true, 2;

wt ∶ wait until(x == 1 ∣∣ ¬b2) {

cs ∶ . . .@accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {

.

rq ∶ b2 , x = true, 1;

wt ∶ wait until(x == 2 ∣∣ ¬b1) {

cs ∶ . . .@accountR . . .}

b2 = false;

.

}

Is the banking system live?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

If someone wants to update the account, does (s)he ever get the opportunity to do so?

‘‘always (reqL ⇒ eventually @accountL) ∧ always (reqR ⇒ eventually @accountR)’’

Is the banking system live (revisited)?

▸ Live = when you want access to account, you eventually get it

▸ Unlive: once you want access to the account, you never get it
▸ unlive behaviour can be characterized as a (set of) infinite traces
▸ or, equivalently, by a Büchi-automaton:

¬@account

@account

true true

req

▸ Checking liveness: Traces(System) ∩ Lω(Live) = ∅?
▸ (explicit) complementation, intersection and emptiness of

Büchi automata!

ω-regular expressions

1. ∅ and ε are regular expressions over Σ

2. if A ∈ Σ then A is a regular expression over Σ

3. if E, E1 and E2 are regular expressions over Σ

then so are E1 + E2, E1.E2 and E∗

E+ is an abbreviation for the regular expression E.E∗

An ω-regular expression G over the alphabet Σ has the form:

G = E1.F
ω

1 + . . . + En.F
ω

n for n > 0

where Ei , Fi are regular expressions over Σ such that ε ∉ L(Fi), for all
0 < i ≤ n

Semantics of ω-regular expressions

▸ The semantics of regular expression E is a language L(E) ⊆ Σ∗:

L(∅) = ∅, L(ε) = { ε }, L(A) = {A}

L(E+E′) = L(E)∪L(E′) L(E.E′) = L(E).L(E′) L(E∗) = L(E)∗

▸ The semantics of ω-regular expression G is a language

L(G) ⊆ Σω:

Lω(G) = L(E1).L(F1)ω ∪ . . . ∪L(En).L(Fn)ω

▸ G1 and G2 are equivalent, denoted G1 ≡ G2, ifLω(G1) = Lω(G2)

ω-regular languages and properties

▸ L ⊆ Σω is ω-regular ifL = Lω(G) for some ω-regular expression

G (over Σ)

▸ ω-regular languages possess several closure properties
▸ they are closed under union, intersection, and

complementation
▸ complementation is not treated here; we use a trick to avoid it

▸ LT property P over AP is called ω-regular

if P is an ω-regular language over the alphabet 2AP

all invariants and regular safety properties are ω-regular!

Büchi automata

▸ NFA (and DFA) are incapable of accepting infinite words

▸ Automata on infinite words
▸ suited for accepting ω-regular languages
▸ we consider nondeterministic Büchi automata (NBA)

▸ Accepting runs have to ‘‘check’’ the entire input word ⇒ are
infinite

⇒ acceptance criteria for infinite runs are needed

▸ NBA are like NFA, but have a distinct acceptance criterion
▸ one of the accept states must be visited infinitely often

Büchi automata

A nondeterministic Büchi automaton (NBA)A is a tuple (Q, Σ, δ,Q0 , F)
where:

▸ Q is a finite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F ⊆ Q is a set of accept (or: final) states

The size ofA, denoted ∣A∣, is the number of states and transitions inA:

∣A∣ = ∣Q∣ +∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣

Language of an NBA

▸ NBAA = (Q, Σ, δ,Q0, F) and word σ = A0A1A2 . . . ∈ Σω

▸ A run for σ inA is an infinite sequence q0 q1 q2 . . . such that:

▸ q0 ∈ Q0 and qi
Ai+1
−−−−→qi+1 for all 0 ≤ i

▸ Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely i
▸ σ ∈ Σω is accepted byA if there exists an accepting run for σ

▸ The accepted language ofA:

Lω(A) = {σ ∈ Σω ∣ there exists an accepting run for σ inA }

▸ NBAA andA′ are equivalent if Lω(A) = Lω(A′)

NBA versus NFA

a

a

a

a

finite equivalence

/⇒ ω-equivalence

L(A) = L(A′),
but Lω(A) ≠ Lω(A′)

a

a

a

a

ω-equivalence

/⇒ finite equivalence

Lω(A) = Lω(A′),
but L(A) ≠ L(A′)

NBA and ω-regular languages

The class of languages accepted by NBA

agrees with the class of ω-regular languages

(1) any ω-regular language is recognized by an NBA

(2) for any NBAA, the language Lω(A) is ω-regular

For any ω-regular language there is an NBA

▸ How to construct an NBA for the ω-regular expression:

G = E1.F
ω

1 + . . . + En.F
ω

n ?

where Ei and Fi are regular expressions over alphabet Σ; ε /∈ Fi
▸ Rely on operations for NBA that mimic operations on ω-regular
expressions:

(1) for NBAA1 andA2 there is an NBA acceptingLω(A1)∪Lω(A2)
(2) for any regular language Lwith ε ∉ L there is an NBA accepting

Lω

(3) for regular language L and NBAA′ there is an NBA accepting

L.Lω(A′)

Union of NBA

For NBAA1 andA2 (both over the alphabet Σ)

there exists an NBAA such that:

Lω(A) = Lω(A1) ∪ Lω(A2) and ∣A∣ = O(∣A1∣ + ∣A2∣)

ω-operator for NFA

For each NFAAwith ε ∉ L(A) there exists an NBAA′ such that:

Lω(A′) = L(A)ω and ∣A′∣ = O(∣A∣)

Concatenation of an NFA and an NBA

For NFAA and NBAA′ (both over the alphabet Σ

there exists an NBAA′′ with

Lω(A′′) = L(A).Lω(A′) and ∣A′′∣ = O(∣A∣ + ∣A′∣)

Summarizing the results so far

For any ω-regular language L

there exists an NBAAwith Lω(A) = L

NBA accept ω-regular languages

For each NBAA: Lω(A) is ω-regular

