Verification

Lecture 4

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Safety

- ► Safety properties ≈ "nothing bad should happen" [Lamport 1977]
- Typical safety property: mutual exclusion property
 - the bad thing (having > 1 process in the critical section) never occurs
- Another typical safety property is deadlock freedom
- ⇒ These properties are in fact invariants
 - An invariant is an LT property
 - that is given by a condition Φ for the states
 - and requires that Φ holds for all reachable states
 - e.g., for mutex property $\Phi \equiv \neg crit_1 \lor \neg crit_2$

REVIEW: Invariants

An LT property P_{inv} over AP is an <u>invariant</u> if there is a propositional logic formula Φ over AP such that:

$$P_{inv} = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} \mid \forall j \ge 0, A_j \models \Phi \right\}$$

- Φ is called an <u>invariant condition</u> of P_{inv}
- Note that
 - $TS \vDash P_{inv} \quad \text{iff} \quad trace(\pi) \in P_{inv} \text{ for all paths } \pi \text{ in } TS \\ \text{iff} \quad L(s) \vDash \Phi \text{ for all states } s \text{ that belong to a path of } TS \\ \text{iff} \quad L(s) \vDash \Phi \text{ for all states } s \in Reach(TS) \end{cases}$
- Φ has to be fulfilled by all initial states and
 - satisfaction of Φ is invariant under all transitions in the reachable fragment of *TS*

Checking an invariant

- Checking an invariant for the propositional formula Φ
 - = check the validity of Φ in every reachable state
 - ⇒ use a slight modification of standard graph traversal algorithms (DFS and BFS)
 - provided the given transition system TS is <u>finite</u>
- Perform a forward depth-first search
 - at least one state *s* is found with $s \notin \Phi \Rightarrow$ the invariance of Φ is violated
- Alternative: backward search
 - starts with all states where Φ does not hold
 - calculates (by a DFS or BFS) the set $\bigcup_{s \in S, s \neq \Phi} Pre^*(s)$

REVIEW: Time complexity

- Under the assumption that
 - ▶ $s' \in Post(s)$ can be encountered in time $\Theta(|Post(s)|)$
 - \Rightarrow this holds for a representation of *Post*(s) by adjacency lists
- The time complexity for invariant checking is $O(N * (1 + |\Phi|) + M)$
 - where N denotes the number of reachable states, and
 - $M = \sum_{s \in S} |Post(s)|$ the number of transitions in the reachable fragment of *TS*
- The adjacency lists are typically given implicitly
 - e.g., by a syntactic description of the concurrent processes as program graphs
 - Post(s) is obtained by the rules for the transition relation

REVIEW: Safety properties

- LT property P_{safe} over AP is a <u>safety property</u> if
 - ► for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:

$$P_{safe} \cap \underbrace{\left\{\sigma' \in \left(2^{AP}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma'\right\}}_{\checkmark} = \varnothing$$

all possible extensions of $\widehat{\sigma}$

- any such finite word $\hat{\sigma}$ is called a bad prefix for P_{safe}
- Minimal bad prefix for Psafe:
 - is a bad prefix $\hat{\sigma}$ for P_{safe} for which no proper prefix of $\hat{\sigma}$ is a bad prefix for P_{safe}
 - ⇒ minimal bad prefixes are bad prefixes of minimal length

REVIEW: Safety properties and finite traces

For transition system *TS* without terminal states and safety property P_{safe} :

 $TS \vDash P_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$

where $BadPref(P_{safe})$ is the set of bad prefixes of P_{safe}

REVIEW: Closure

• For trace $\sigma \in (2^{AP})^{\omega}$, let $pref(\sigma)$ be the set of <u>finite prefixes</u> of σ :

 $pref(\sigma) = \{ \widehat{\sigma} \in (2^{AP})^* \mid \widehat{\sigma} \text{ is a finite prefix of } \sigma \}$

• if
$$\sigma = A_0 A_1 \dots$$
 then $pref(\sigma) = \{\varepsilon, A_0, A_0 A_1, A_0 A_1 A_2, \dots\}$ is infinite

- For property *P* this is lifted as follows: $pref(P) = \bigcup_{\sigma \in P} pref(\sigma)$
- The <u>closure</u> of LT property *P*:

$$closure(P) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid pref(\sigma) \subseteq pref(P) \right\}$$

- the set of infinite traces whose finite prefixes are also prefixes of P, or
- infinite traces in the closure of P do not have a prefix that is not a prefix of P

Safety properties and closures

LT property P over AP is a safety property

if and only if closure(P) = P

Proof

 $closure(P) = P \implies P$ is a safety property

We show that for all $\sigma \in (2^{AP})^{\omega} \setminus P$ there exists a finite prefix $\widehat{\sigma}$ of σ such that $P \cap \left\{ \sigma' \in (2^{AP})^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\} = \emptyset$.

- take an element $\sigma \in (2^{AP})^{\omega} \setminus P$
- since σ ∉ P = closure(P), there exists a finite prefix σ̂ of σ with σ̂ ∉ pref(P)
- by the definition of pref(P), there is no σ' ∈ P such that σ̂ ∈ pref(σ').
- hence, $\hat{\sigma}$ is a bad prefix for *P*.

Proof (cont'd)

P is a safety property \Rightarrow *closure*(*P*) = *P*

It suffices to show that $closure(P) \subseteq P$, because $P \subseteq closure(P)$ holds for all properties. Proof by contradiction

Proof by contradiction.

- assume there is some $\sigma \in closure(P) \setminus P$.
- since *P* is a safety property and $\sigma \notin P$, σ has a finite prefix $\hat{\sigma} \in BadPref(\sigma)$.
- As $\sigma \in closure(P)$, we have $\widehat{\sigma} \in pref(\sigma) \subseteq pref(P)$.
- Hence, there exists a word $\sigma' \in P$ such that $\widehat{\sigma}$ is a prefix of σ' .
- This contradicts that *P* is a safety property.

Finite trace equivalence and safety properties

For *TS* and *TS*′ be transition systems (over *AP*) without terminal states:

 $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$ if and only if for any safety property $P_{safe} : TS' \vDash P_{safe} \Rightarrow TS \vDash P_{safe}$

Traces_{fin}(TS) = Traces_{fin}(TS') if and only if TS and TS' satisfy the same safety properties

REVIEW: Finite vs. infinite traces

For *TS* without terminal states and finite *TS'* trace inclusion and finite-trace inclusion coincide

this does not hold for infinite TS' (cf. next slide) but also holds for image-finite TS'

REVIEW: Trace inclusion *≠* finite trace inclusion

Proof

 $Traces(TS) \subseteq Traces(TS') \Rightarrow Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$ holds because $Traces_{fin}(TS) = pref(Traces(TS))$.

For image-finite TS:

 $Traces_{fin}(TS) \subseteq Traces_{fin}(TS') \Rightarrow Traces(TS) \subseteq Traces(TS')$

- Let $A_0A_1 \dots \in Traces(TS)$. We show that there exists a path $s_0s_1 \dots \in Paths(TS')$ with $trace(s_0s_1 \dots) = A_0A_1 \dots$
- Since $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$ we know that, for every $m \in \mathbb{N}$, there exists a finite path $\pi^m = s_0^m s_1^m \dots s_m^m \in Paths_{fin}(TS')$ such that $trace(\pi^m) = A_0A_1 \dots A_m$.
- Careful: There is no guarantee that π^m is a prefix of π^{m+1} !

Proof (cont'd)

We construct $s_0s_1...$ inductively as follows, maintaining the following invariant: for every $m \in \mathbb{N}$, there are infinitely many m' > m such that $\pi^{m'} = s_0^{m'}...s_{m'}^{m'}$ is an initial finite path fragment in *TS'*, $trace(\pi^{m'}) = A_0...A_{m'}$, and $s_0...s_m = s_0^{m'}...s_m^{m'}$.

- base case (m = 0): For each m' there is an initial path fragment $s_0^{m'} \dots s_{m'}^{m'}$ with $trace(\pi^{m'}) = A_0 \dots A_{m'}$. Since there are only finitely many initial states, there must exist some initial state s_0 such that there are infinitely many m' > 0 with an initial path fragment $\pi^{m'} = s_0^{m'} \dots s_{m'}^{m'}$ such that $s_0^{m'} = s_0$ and $trace(\pi^{m'}) = A_0 \dots A_{m'}$.
- ▶ induction step $(m \to m + 1)$: by induction hypothesis, there exist infinitely many m' > m such that $\pi^{m'} = s_0^{m'} \dots s_{m'}^{m'}$ is an initial finite path fragment in TS', $trace(\pi^{m'}) = A_0 \dots A_{m'}$, and $s_0 \dots s_m = s_0^{m'} \dots s_m^{m'}$. Since s_m has only finitely many successors, there must exist some successor s_{m+1} such that there are infinitely many m' > m + 1 such that $\pi^{m'} = s_0^{m'} \dots s_{m'}^{m'}$ is an initial finite path fragment in TS', $trace(\pi^{m'}) = A_0 \dots A_{m'}$, and $s_0 \dots s_{m+1} = s_0^{m'} \dots s_{m+1}^{m'}$.

REVIEW: Liveness properties

LT property *P*_{live} over *AP* is a <u>liveness</u> property whenever

$$pref(P_{live}) = (2^{AP})^*$$

- A liveness property is an LT property
 - that does not rule out any prefix
- Liveness properties are violated in "infinite time"
 - whereas safety properties are violated in finite time
 - finite traces are of no use to decide whether P holds or not
 - any finite prefix can be extended such that the resulting infinite trace satisfies P

Example liveness properties

- "If the tank is empty, the outlet valve will eventually be closed"
- "If the outlet valve is open and the request signal disappears, the outlet valve will eventually be closed"
- "If the tank is full and a request is present, the outlet valve will eventually be opened"
- "The program terminates within 31 computational steps"
 a finite trace may violate this; this is a safety property!
- "The program eventually terminates"

Liveness properties for mutual exclusion

- Eventually:
 - each process will eventually enter its critical section
- Repeated eventually:
 - each process will enter its critical section infinitely often
- Starvation freedom:
 - each waiting process will eventually enter its critical section

how to formalize these properties?

Liveness properties for mutual exclusion

$$P = \{A_0 A_1 A_2 \dots | A_j \subseteq AP \& \dots \} \text{ and } AP = \{wait_1, crit_1, wait_2, crit_2\}$$

• Eventually:

$$(\exists j \ge 0. \ crit_1 \in A_j) \land (\exists j \ge 0. \ crit_2 \in A_j)$$

Repeated eventually:

$$\left(\stackrel{\infty}{\exists} j \ge 0. \ crit_1 \in A_j\right) \land \left(\stackrel{\infty}{\exists} j \ge 0. \ crit_2 \in A_j\right)$$

Starvation freedom:

$$\forall j \ge 0. (wait_1 \in A_j \implies (\exists k > j. crit_1 \in A_k)) \land \forall j \ge 0. (wait_2 \in A_j \implies (\exists k > j. crit_2 \in A_k))$$

Safety vs. liveness

- Are safety and liveness properties disjoint?
 Almost.
- Is every linear-time property a safety or liveness property? No.
- But:

for any LT property P an equivalent LT property P' exists which is a conjunction of a safety and a <u>liveness</u> property

 $\Rightarrow \frac{\text{safety and liveness provide an essential characterization of LT}}{\text{properties}}$

Basic properties

If P (over AP) is both a safety and a liveness property then:

$$P = \left(2^{AP}\right)^{\omega}$$

For any LT properties *P* and *P*':

 $closure(P \cup P') = closure(P) \cup closure(P')$

Proof

$closure(P) \cup closure(P') \subseteq closure(P \cup P')$

- $P \subseteq P \cup P'$ implies that $closure(P) \subseteq closure(P \cup P')$
- ▶ analogously, $P' \subseteq P \cup P'$, hence $closure(P') \subseteq closure(P \cup P')$.

 $closure(P \cup P') \subseteq closure(P) \cup closure(P')$

- Suppose $\sigma \in closure(P \cup P') \setminus (closure(P) \cup closure(P'))$.
- every finite prefix of σ is in pref(P) or pref(P') or both.
- ► case 1: there are infinitely many prefixes of σ in *pref*(*P*). Then all finite prefixes of *P* are in *pref*(*P*), hence $\sigma \in closure(P)$.
- ► case 2: there are infinitely many prefixes of σ in pref(P'). Then all finite prefixes of *P* are in pref(P'), hence $\sigma \in closure(P')$.
- case 3: there are only finitely many prefixes of σ in pref(P) and only finitely many prefixes of σ in pref(P'). Then there are only finitely many prefixes of σ in $pref(P \cup P')$. Contradiction.

A non-safety and non-liveness property

<u>"the machine provides infinitely often beer</u> after initially providing sprite three times in a row"

- This property consists of two parts:
 - it requires beer to be provided infinitely often
 - ⇒ as any finite trace fulfills this, it is a liveness property
 - the first three drinks it provides should all be sprite
 - ⇒ bad prefix = one of first three drinks is beer; this is a safety property
- Property is thus a conjunction of a safety and a liveness property

Decomposition theorem

For any LT property *P* over *AP* there exists a safety property P_{safe} and a liveness property P_{live} (both over *AP*) such that:

 $P = P_{safe} \cap P_{live}$

Proposal:
$$P = \underbrace{closure(P)}_{=P_{safe}} \cap \underbrace{\left(P \cup \left(\left(2^{AP}\right)^{\omega} \smallsetminus closure(P)\right)\right)}_{=P_{live}}$$

Proof

- Psafe = closure(P) is a safety property: closure(closure(P)) = closure(P).
- To show that P_{live} is a liveness property, we prove that $closure(P_{live}) \supseteq (2^{AP})^{\omega}$, which is equivalent to $pref(P_{live}) = (2^{AP})^*$.

$$closure(P_{live}) = closure(P \cup ((2^{AP})^{\omega} \setminus closure(P))) = closure(P) \cup closure((2^{AP})^{\omega} \setminus closure(P)) \supseteq closure(P) \cup ((2^{AP})^{\omega} \setminus closure(P)) = (2^{AP})^{\omega}$$

"Sharpest" decomposition theorem

Let *P* be an LT property and $P = P_{safe} \cap P_{live}$ where P_{safe} is a safety property and P_{live} a liveness property. Then: 1. closure(P) $\subseteq P_{safe}$ 2. $P_{live} \subseteq P \cup ((2^{AP})^{\omega} \setminus closure(P))$

closure(P) is the <u>strongest</u> safety property and $((2^{AP})^{\omega} \\ (closure(P))$ the <u>weakest</u> liveness property

Classification of LT properties

Does this program terminate?

Inc ||| Reset

where proc lnc = while $\langle x \ge 0 \text{ do } x := x + 1 \rangle$ od proc Reset = x := -1

x is a shared integer variable that initially has value 0

Do we starve?

Process two starves

process two finitely many times in critical section remains unfair

Process one starves

Fairness

- Starvation freedom is often considered under process fairness
 - ⇒ there is a fair scheduling of the execution of processes
- Fairness is typically needed to prove liveness
 - not for safety properties!
 - to prove some form of progress, progress needs to be possible
- Fairness is concerned with a fair resolution of nondeterminism
 - such that it is not biased to consistently ignore a possible option
- Problem: liveness properties constrain infinite behaviours
 - but some traces---that are unfair---refute the liveness property

Fairness constraints

What is wrong with our examples?

Nothing!

- interleaving: not realistic as in reality no processor is infinitely faster than another
- semaphore-based mutual exclusion: level of abstraction
- Rule out "unrealistic" runs by imposing fairness constraints
 - what to rule out? \Rightarrow different kinds of fairness constraints
- "A process gets its turn infinitely often"
 - unconditional fairness always
 - if it is enabled infinitely often
 - if it is continuously enabled from some point on weak fairness

strong fairness

Fairness

This program terminates under unconditional fairness:

proc Inc = while $\langle x \ge 0 \text{ do } x := x + 1 \rangle$ od proc Reset = x := -1

x is a shared integer variable that initially has value 0

Fairness constraints

Unconditional fairness

an activity is executed infinitely often

Strong fairness

if an activity is <u>infinitely often</u> enabled (not necessarily always!) then it has to be executed infinitely often

Weak fairness

if an activity is <u>continuously enabled</u> (no temporary disabling!) then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

Fairness definition

For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$,

and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of *TS*:

1. ρ is <u>unconditionally A-fair</u> whenever: true $\implies \forall k \ge 0. \exists j \ge k. \alpha_j \in A$ infinitely often A is taken

2. ρ is strongly *A*-fair whenever:

$$(\forall k \ge 0. \exists j \ge k. Act(s_j) \cap A \neq \emptyset) \implies$$

$$(\forall k \ge 0. \exists j \ge k. \alpha_j \in A)$$

infinitely often A is enabled

infinitely often A is taken

3. ρ is weakly *A*-fair whenever:

$$\underbrace{(\exists k \ge 0, \forall j \ge k, Act(s_j) \cap A \neq \emptyset)}_{A \text{ is eventually always enabled}} \implies \underbrace{(\forall k \ge 0, \exists j \ge k, \alpha_j \in A)}_{\text{infinitely often } A \text{ is taken}}$$

where
$$Act(s) = \{ \alpha \in Act \mid \exists s' \in S. s \xrightarrow{\alpha} s' \}$$

Example (un)fair executions

Which fairness notion to use?

- Fairness constraints aim to rule out "unreasonable" runs
- ► Too strong? ⇒ relevant computations ruled out verification yields:
 - "false": error found
 - "true": don't know as some relevant execution may refute it
- ► Too weak? ⇒ too many computations considered verification yields:
 - "true": property holds
 - "false": don't know, as refutation maybe due to some unreasonable run

Relation between fairness constraints

unconditional A-fairness \implies strong A-fairness \implies weak A-fairness

Fairness assumptions

- Fairness constraints impose a requirement on any $\alpha \in A$
- In practice: different constraints on different action sets needed
- This is realised by <u>fairness assumptions</u>

Fairness assumptions

A fairness assumption for Act is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

with \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

- Execution ρ is \mathcal{F} -fair if:
 - it is unconditionally A-fair for all $A \in \mathcal{F}_{ucond}$, and
 - it is strongly A-fair for all $A \in \mathcal{F}_{strong}$, and
 - it is weakly A-fair for all $A \in \mathcal{F}_{weak}$

fairness assumption $(\emptyset, \mathcal{F}', \emptyset)$ denotes strong fairness; $(\emptyset, \emptyset, \mathcal{F}')$ weak, etc.

 $\mathcal{F} = (\emptyset, \{\{enter_1, enter_2\}\}, \emptyset)$ \mathcal{F}_{strong}

in any \mathcal{F}' -fair execution each process infinitely often requests access

Fair paths and traces

- Path $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ is <u>*F*-fair</u> if
 - there exists an \mathcal{F} -fair execution $s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \dots$
 - *FairPaths*_{\mathcal{F}}(*s*) denotes the set of \mathcal{F} -fair paths that start in *s*
 - FairPaths_{\mathcal{F}}(TS) = $\bigcup_{s \in I}$ FairPaths_{\mathcal{F}}(s)
- Trace σ is \mathcal{F} -fair if there exists an \mathcal{F} -fair execution ρ with $trace(\rho) = \sigma$
 - $FairTraces_{\mathcal{F}}(s) = trace(FairPaths_{\mathcal{F}}(s))$
 - $FairTraces_{\mathcal{F}}(TS) = trace(FairPaths_{\mathcal{F}}(TS))$

these notions are only defined for infinite paths and traces; why?

Fair satisfaction

TS satisfies LT-property P:

```
TS \models P if and only if Traces(TS) \subseteq P
```

- TS satisfies the LT property P if <u>all</u> its observable behaviors are admissible
- TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

 $TS \models_{\mathcal{F}} P$ if and only if $FairTraces_{\mathcal{F}}(TS) \subseteq P$

- if all paths in *TS* are \mathcal{F} -fair, then *TS* $\models_{\mathcal{F}} P$ if and only if *TS* $\models P$
- if some path in TS is not \mathcal{F} -fair, then possibly TS $\models_{\mathcal{F}} P$ but TS $\notin P$

 $TS \notin$ "every process enters its critical section infinitely often" and $TS \notin_{\mathcal{F}}$ "every ... often" but $TS \models_{\mathcal{F}'}$ "every ... often"

Fair concurrency with synchronization

 $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$, for $1 \le i \le n$, has no terminal states

 $TS = TS_1 \parallel TS_2 \parallel \ldots \parallel TS_n$

TS_i and *TS_j* (*i* \neq *j*) synchronize on their common actions:

$$Syn_{i,j} = Act_i \cap Act_j$$

 $Syn_{i,j} \cap Act_k = \emptyset$ for any $k \neq i, j$ For simplicity, it is assumed that *TS* has no terminal states

how to establish a fair communication mechanism?

Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness

Some fairness assumptions

- Strong fairness constraint: $\{Act_1, Act_2, \dots, Act_n\}$
 - TS_i executes an action (not necessarily a sync!) infinitely often provided TS is infinitely often in a (global) state with a transition of TS_i enabled
- ► Strong fairness constraint: $\{ \{ \alpha \} \mid \alpha \in Syn_{i,j}, 0 < i < j \le n \}$
 - every individual synchronization is forced to happen infinitely often
- ▶ Strong fairness constraint: $\{Syn_{i,j} | 0 < i < j \le n\}$
 - every pair of processes is forced to synchronize infinitely often
- Strong fairness constraint: $\left\{\bigcup_{0 < i < j \le n} Syn_{i,j}\right\}$
 - a synchronization (possibly the same) takes place infinitely often

For *TS* with set of actions *Act* and fairness assumption \mathcal{F} for *Act*: \mathcal{F} is <u>realizable</u> for *TS* if for any $s \in Reach(TS)$: *FairPaths* $\mathcal{F}(s) \neq \emptyset$

every initial finite execution fragment of TS can be completed to a fair execution

The suffix property

$$\underbrace{s'_0 \xrightarrow{\beta_1} s'_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s'_n}_{\text{arbitrary starting fragment}} = \underbrace{s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots}_{\text{fair continuation}}$$

Realizable fairness and safety

For TS and safety property P_{safe} (both over AP) and \mathcal{F} a realizable fairness assumption for TS: $TS \models P_{safe}$ if and only if $TS \models_{\mathcal{F}} P_{safe}$

Summary LT properties

- LT properties are finite sets of infinite words over 2^{AP} (= traces)
- An invariant requires a condition Φ to hold in any reachable state
- Each trace refuting a safety property has a finite prefix causing this
 - invariants are safety properties with bad prefix $\Phi^*(\neg \Phi)$
 - a safety property is regular iff its set of bad prefixes is a regular language
 - ⇒ safety properties constrain finite behaviors
- A liveness property does not rule out finite behaviour
 - ⇒ liveness properties constrain infinite behaviors
- Any LT property is equivalent to a conjunction of a safety and a liveness property

Summary of fairness

- Fairness constraints rule out unrealistic traces
 - i.e., constraints on the actions that occur along infinite executions
 - important for the verification of liveness properties
- Unconditional, strong, and weak fairness constraints
 - unconditional \Rightarrow strong fair \Rightarrow weak fair
- Fairness assumptions allow distinct constraints on distinct action sets
- (Realizable) fairness assumptions are irrelevant for safety properties