Verification

Lecture 3

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Channel systems

A program graph over (Var, Chan) is a tuple

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

where

$$\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc \cup \underbrace{Loc \times Comm \times Loc}_{communication actions}$$

A <u>channel system</u> CS over $(\bigcup_{0 < i \le n} Var_i, Chan)$:

$$CS = [PG_1 | \dots | PG_n]$$

with program graphs *PG_i* over (*Var_i*, *Chan*)

REVIEW: Transition system semantics of a channel system

Let $CS = [PG_1 | \dots | PG_n]$ be a <u>channel system</u> over (*Chan*, *Var*) with

 $PG_i = (Loc_i, Act_i, Effect_i, \rightsquigarrow_i, Loc_{0,i}, g_{0,i}), \text{ for } 0 < i \le n$

TS(CS) is the <u>transition system</u> (S, Act, \rightarrow , I, AP, L) where:

• $S = (Loc_1 \times \cdots \times Loc_n) \times Eval(Var) \times Eval(Chan)$

•
$$Act = (\biguplus_{0 < i \le n} Act_i) \uplus \{\tau\}$$

 $\blacktriangleright \rightarrow$ is defined by the inference rules on the next slides

$$\blacktriangleright I = \left\{ \left\langle \ell_1, \ldots, \ell_n, \eta, \xi_0 \right\rangle \mid \forall i. \ \left(\ell_i \in Loc_{0,i} \& \eta \models g_{0,i} \right) \& \forall c. \xi_0(c) = \varepsilon \right\}$$

•
$$AP = \biguplus_{0 < i \le n} Loc_i \uplus Cond(Var)$$

► $L(\langle \ell_1, \ldots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \ldots, \ell_n \} \cup \{ g \in Cond(Var) \mid \eta \vDash g \}$

REVIEW: Inference rules (I)

• Interleaving for $\alpha \in Act_i$:

$$\frac{\ell_{i} \xrightarrow{g:\alpha} \ell'_{i} \land \eta \models g}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\alpha} \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = Effect(\alpha, \eta)$

Synchronous message passing over $c \in Chan, cap(c) = 0$:

$$\frac{\ell_{i} \stackrel{c?x}{\longrightarrow} \ell_{i}' \land \ell_{j} \stackrel{c!y}{\longrightarrow} \ell_{j}' \land i \neq j}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{j}, \dots, \ell_{n}, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_{1}, \dots, \ell_{i}', \dots, \ell_{j}', \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = \eta[x := v].$

REVIEW: Inference rules (II)

- Asynchronous message passing for $c \in Chan$, cap(c) > 0:
 - receive a value along channel c and assign it to variable x:

$$\frac{\ell_i \stackrel{c?x}{\longrightarrow} \ell'_i \land len(\xi(c)) = k > 0 \land \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$

where $\eta' = \eta[x \coloneqq v_1]$ and $\xi' = \xi[c \coloneqq v_2 \dots v_k]$.

transmit value v ∈ dom(c) over channel c:

$$\frac{\ell_i \stackrel{c!v}{\longrightarrow} \ell'_i \land len(\xi(c)) = k < cap(c) \land \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta, \xi' \rangle}$$

where $\xi' = \xi[c := v_1 v_2 \dots v_k v].$

REVIEW: nanoPromela

nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ with \mathcal{P}_i processes A process is specified by a statement:

stmt ::=
$$skip | x := expr | c?x | c!expr |$$

 $stmt_1; stmt_2 | atomic \{assignments\} |$
if :: $g_1 \Rightarrow stmt_1 \dots :: g_n \Rightarrow stmt_n$ fi
do :: $g_1 \Rightarrow stmt_1 \dots :: g_n \Rightarrow stmt_n$ od
assignments ::= $x_1 := expr_1; x_2 := expr_2; \dots; x_m := expr_m$

x is a variable in *Var*, expr an expression and *c* a channel, *g_i* a guard assume the Promela specification is type-consistent

REVIEW: Peterson's algorithm

The nanoPromela-code of process \mathcal{P}_1 is given by the statement:

od

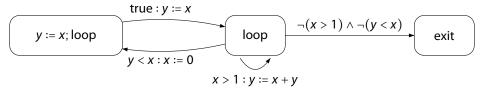
The <u>semantics</u> of a nanoPromela-statement over (*Var*, *Chan*) is a program graph over (*Var*, *Chan*).

The program graphs PG_1, \ldots, PG_n for the processes $\mathcal{P}_1, \ldots, \mathcal{P}_n$ of a nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \ldots | \mathcal{P}_n]$ constitute a <u>channel</u> <u>system</u> over (*Var*, *Chan*)

Example

loop = **do** ::
$$x > 1 \Rightarrow y := x + y$$

:: $y < x \Rightarrow x := 0; y := x$
od



Substatements

- substatements: potential locations of intermediate states during the execution of a statement.
- ▶ for stmt ∈ {skip, x := expr, c?x, c!expr}: sub(stmt) = {stmt, exit}
- ► $sub(stmt_1; stmt_2) = {stmt'; stmt_2 | stmt' \in sub(stmt_1) \setminus {exit}} \cup sub(stmt_2)$
- ► for cond_cmd = if :: $g_1 \Rightarrow \text{stmt}_1 \dots :: g_n \Rightarrow \text{stmt}_n$ fi, $sub(\text{cond}_cmd) = \{\text{stmt}\} \cup \bigcup_{1 \le i \le n} sub(\text{stmt}_i)$

Inference rules

skip<u>true</u>: *id*→ exit

where *id* denotes an action that does not change the values of the variables

$$x := \exp x \xrightarrow{\text{true} : \operatorname{assign}(x, \exp x)} exit$$

assign(x, expr) denotes the action that only changes x, no other variables

$$c?x \xrightarrow{c?x} exit$$
 $c!expr \xrightarrow{c!expr} exit$

Inference rules

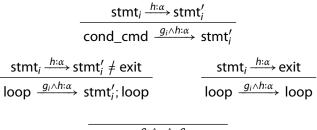
$$\operatorname{atomic}\{x_1 := \exp r_1; \ldots; x_m := \exp r_m\} \xrightarrow{\operatorname{true}: \alpha_m} \operatorname{exit}$$

where $\alpha_0 = id$, $\alpha_i = Effect(assign(x_i, expr_i), Effect(\alpha_{i-1}, \eta))$ for $1 \le i \le m$

$$\frac{\text{stmt}_1 \xrightarrow{g:\alpha} \text{stmt}'_1 \neq \text{exit}}{\text{stmt}_1; \text{stmt}_2 \xrightarrow{g:\alpha} \text{stmt}'_1; \text{stmt}_2}$$

$$\frac{\text{stmt}_1 \xrightarrow{g:\alpha} \text{exit}}{\text{stmt}_1; \text{stmt}_2 \xrightarrow{g:\alpha} \text{stmt}_2}$$

Inference rules



loop
$$\xrightarrow{\neg g_1 \land \dots \land \neg g_n}$$
 exit

The state-space explosion problem

► The # states of a simple program graph is:

$$\#$$
program locations $| \cdot \prod_{variable x} | dom(x) |$

- ⇒ number of states grows <u>exponentially</u> in the number of program variables
 - N variables with k possible values each yields k^N states
- A program with 10 locations, 3 bools, 5 integers (in range 0...9):

$$10 \cdot 2^3 \cdot 10^5 = 800,000$$
 states

Adding a single 50-positions bit-array yields 800,000.2⁵⁰ states

Concurrent programs

• The # states of $P \equiv P_1 \parallel \ldots \parallel P_n$ is maximally:

#states of $P_1 \times \ldots \times #$ states of P_n

- \Rightarrow # states grows exponentially with the number of components
 - The composition of N components of size k each yields k^N states

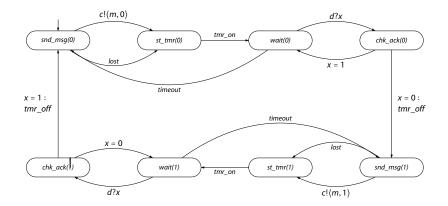
Channel systems

- Asynchronous communication of processes via <u>channels</u>
 - each channel c has a bounded capacity cap(c)
 - if a channel has capacity 0, we obtain handshaking
- ▶ # states of system with *N* components and *K* channels is:

$$\prod_{i=1}^{N} \left(\left| \# \text{program locations} \right| \prod_{\text{variable } x} |dom(x)| \right) \cdot \prod_{j=1}^{K} |dom(c_j)|^{cap(c_j)}$$

this is the underlying structure of Promela

The alternating bit protocol



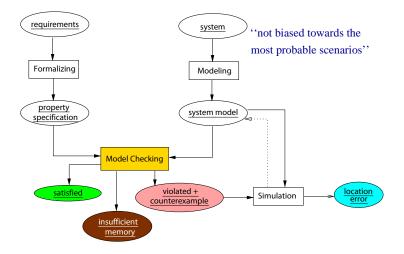
channel capacity 10, and datums are bits, yields $2 \cdot 8 \cdot 6 \cdot 4^{10} \cdot 2^{10} = 3 \cdot 2^{35} \approx 10^{11}$ states

Summary: Transition Systems

- Transition systems are fundamental for modeling software and hardware
- Interleaving = execution of independent concurrent processes by nondeterminism
- For shared variable communication use composition on program graphs
- Handshaking on a set *H* of actions amounts to
 - executing action \notice H autonomously (= interleaving)
 - those in H simultaneously
- Channel systems = program graphs + first-in first-out communication channels
 - handshaking for channels of capacity 0
 - asynchronous message passing when capacity exceeds 0
 - semantical model of Promela
- Size of transition systems grows exponentially
 - in the number of concurrent components and the number of variables

Linear-Time Properties

REVIEW: model checking



REVIEW: executions

A <u>finite execution fragment</u> ρ of TS is an alternating sequence of states and actions ending with a state:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$.

An <u>infinite execution fragment</u> ρ of *TS* is an infinite, alternating sequence of states and actions:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i$.

- An execution of TS is an initial, maximal execution fragment
 - a <u>maximal</u> execution fragment is either finite ending in a terminal state, or infinite
 - an execution fragment is initial if $s_0 \in I$

State graph

- The state graph of *TS*, notation G(TS), is the digraph (V, E)with vertices V = S and edges $E = \{(s, s') \in S \times S \mid s' \in Post(s)\}$
 - ⇒ omit all state and transition labels in TS and ignore being initial
- ▶ *Post*^{*}(*s*) is the set of states reachable *G*(*TS*) from *s*

$$Post^*(C) = \bigcup_{s \in C} Post^*(s) \text{ for } C \subseteq S$$

- The notations $Pre^*(s)$ and $Pre^*(C)$ have analogous meaning
- The set of reachable states: $Reach(TS) = Post^*(I)$

Path fragments

- A path fragment is an execution fragment without actions
- A <u>finite path fragment</u> $\hat{\pi}$ of *TS* is a state sequence:

 $\widehat{\pi} = s_0 s_1 \dots s_n$ such that $s_{i+1} \in Post(s_i)$ for all $0 \le i < n$ where $n \ge 0$

• An <u>infinite path fragment</u> π of *TS* is an infinite state sequence:

 $\pi = s_0 s_1 s_2 \dots$ such that $s_{i+1} \in Post(s_i)$ for all $i \ge 0$

- A path of TS is an initial, maximal path fragment
 - a <u>maximal</u> path fragment is either finite ending in a terminal state, or infinite
 - a path fragment is initial if $s_0 \in I$
 - *Paths*(*s*) is the set of maximal path fragments π with *first*(π) = *s*

Traces

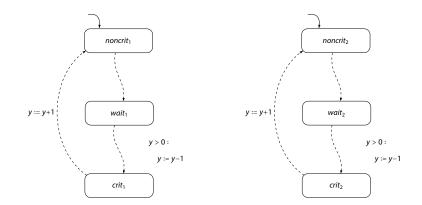
- Actions are mainly used to model the (possibility of) interaction
 - synchronous or asynchronous communication
- Here, focus on the states that are visited during executions
 - the states themselves are not "observable", but just their atomic propositions
- Consider sequences of the form $L(s_0)L(s_1)L(s_2)...$
 - just register the (set of) atomic propositions that are valid along the execution
 - instead of execution $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \dots$
 - ⇒ this is called a trace
- For a transition system without terminal states:
 - traces are infinite words over the alphabet 2^{AP} , i.e., they are in $(2^{AP})^{\omega}$

Traces

- Let transition system TS = (S, Act, →, I, AP, L) without terminal states
 - all maximal paths (and excutions) are infinite
- The <u>trace</u> of path fragment $\pi = s_0 s_1 \dots$ is trace $(\pi) = L(s_0) L(s_1) \dots$
 - the trace of $\widehat{\pi} = s_0 s_1 \dots s_n$ is $trace(\widehat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$
- The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$
- Traces(s) = trace(Paths(s)) $Traces(TS) = \bigcup_{s \in I} Traces(s)$
- $Traces_{fin}(s) = trace(Paths_{fin}(s))$ $Traces_{fin}(TS) = \bigcup_{s \in I} Traces_{fin}(s)$

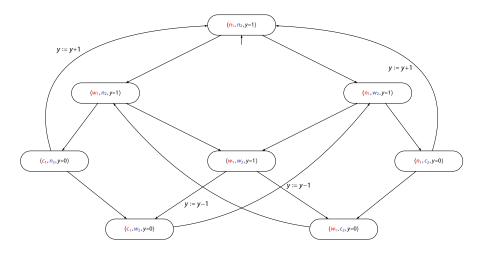
Semaphore-based mutual exclusion

 PG_1 :



y=0 means "lock is currently possessed"; y=1 means "lock is free"

Transition system $TS(PG_1 ||| PG_2)$



Example traces

Let $AP = \{ crit_1, crit_2 \}$ Example path:

$$\pi = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle \rightarrow$$
$$\langle n_1, n_2, y = 1 \rangle \rightarrow \langle n_1, w_2, y = 1 \rangle \rightarrow \langle n_1, c_2, y = 0 \rangle \rightarrow \dots$$

The trace of this path is the infinite word:

 $\textit{trace}(\pi) = \varnothing \varnothing \{\textit{crit}_1\} \varnothing \varnothing \{\textit{crit}_2\} \varnothing \varnothing \{\textit{crit}_1\} \varnothing \varnothing \{\textit{crit}_2\} \dots$

The trace of the finite path fragment:

$$\widehat{\pi} = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle w_1, w_2, y = 1 \rangle \rightarrow \langle w_1, c_2, y = 0 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle$$

is:

$$trace(\widehat{\pi}) = \emptyset \emptyset \emptyset \{ crit_2 \} \emptyset \{ crit_1 \}$$

Linear-time properties

- Linear-time properties specify the traces that a TS may exhibit
 - LT-property specifies the admissible behaviour of system under consideration

later, a logic will be introduced for specifying LT properties

- A linear-time property (LT property) over AP is a subset of $(2^{AP})^{\omega}$
 - finite words are not needed, as it is assumed that there are no terminal states
- TS (over AP) satisfies LT property P (over AP):

 $TS \models P$ if and only if $Traces(TS) \subseteq P$

- TS satisfies the LT property P if all its "observable" behaviors are admissible
- ▶ state $s \in S$ satisfies P, notation $s \models P$, whenever $Traces(s) \subseteq P$

How to specify mutual exclusion?

"Always at most one process is in its critical section"

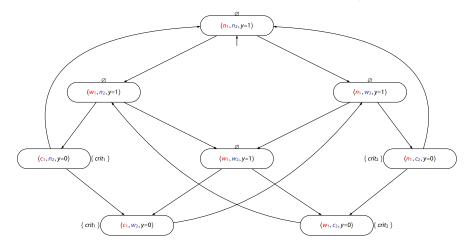
- Let $AP = \{ crit_1, crit_2 \}$
 - other atomic propositions are not of any relevance for this property
- Formalization as LT property

 $P_{mutex} = \text{set of infinite words } A_0 A_1 A_2 \dots$ with { crit_1, crit_2 } $\notin A_i$ for all $0 \le i$

- Contained in P_{mutex} are e.g., the infinite words:
 - $({crit_1} {crit_2})^{\omega}$ and ${crit_1} {crit_1} {crit_1} \dots$ and $\emptyset \emptyset \emptyset \dots$
 - but not $\{ crit_1 \} \oslash \{ crit_1, crit_2 \} \dots$ or $\bigotimes \{ crit_1 \}, \oslash \oslash \{ crit_1, crit_2 \} \oslash \dots$

Does the semaphore-based algorithm satisfy *P_{mutex}*?

Does the semaphore-based algorithm satisfy *P_{mutex}*?



Yes as there is no reachable state labeled with $\{ crit_1, crit_2 \}$

How to specify starvation freedom?

"A process that wants to enter the critical section is eventually able to do so""

- Let $AP = \{ wait_1, crit_1, wait_2, crit_2 \}$
- Formalization as LT-property

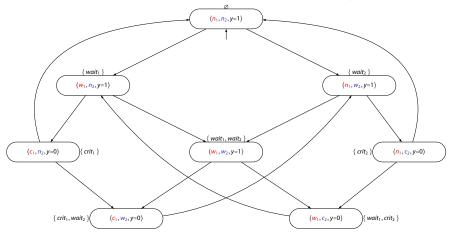
 $P_{nostarve}$ = set of infinite words $A_0 A_1 A_2 \dots$ such that:

$$\begin{pmatrix} \stackrel{\infty}{\exists} j. wait_i \in A_j \end{pmatrix} \implies \begin{pmatrix} \stackrel{\infty}{\exists} j. crit_i \in A_j \end{pmatrix} \text{ for each } i \in \{1, 2\}$$

there exist infinitely many: $\begin{pmatrix} \stackrel{\infty}{\exists} j. wait_i \in A_j \end{pmatrix} \equiv (\forall k \ge 0. \exists j > k. wait_i \in A_j)$

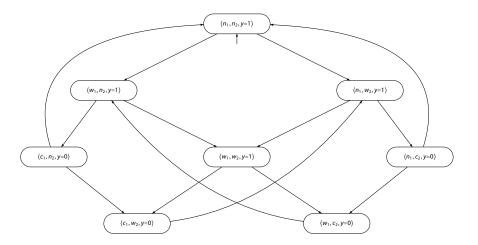
Does the semaphore-based algorithm satisfy *P*nostarve?

Does the semaphore-based algorithm satisfy *P*_{nostarve}?



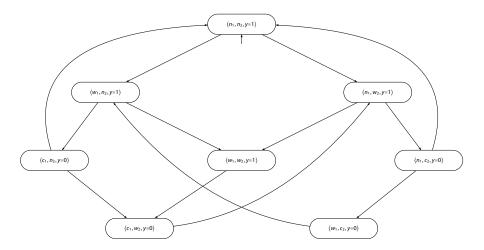
No. Trace \emptyset ({ wait₂ } { wait₁, wait₂ } { crit₁, wait₂ })^{ω} \in Traces(TS), but $\notin P_{nostarve}$

Mutual exclusion algorithm revisited



this algorithm satisfies P_{mutex}

Refining the mutual exclusion algorithm



this variant algorithm with an omitted edge also satisfies P_{mutex}

Trace equivalence and LT properties

For *TS* and *TS*' be transition systems (over *AP*) without terminal states:

 $Traces(TS) \subseteq Traces(TS')$

if and only if

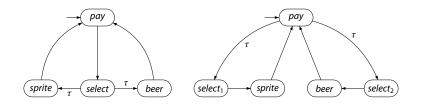
for any LT property $P: TS' \models P$ implies $TS \models P$

Traces(TS) = Traces(TS')

if and only if

TS and TS' satisfy the same LT properties

Two beverage vending machines



AP = { pay, sprite, beer }

there is no LT-property that can distinguish between these machines

Invariants

- ► Safety properties ≈ "nothing bad should happen" [Lamport 1977]
- Typical safety property: mutual exclusion property
 - the bad thing (having > 1 process in the critical section) never occurs
- Another typical safety property is deadlock freedom
- ⇒ These properties are in fact invariants
 - An invariant is an LT property
 - that is given by a condition Φ for the states
 - and requires that Φ holds for all reachable states
 - e.g., for mutex property $\Phi \equiv \neg crit_1 \lor \neg crit_2$

Invariants

An LT property P_{inv} over AP is an <u>invariant</u> if there is a propositional logic formula Φ over AP such that:

$$P_{inv} = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} \mid \forall j \ge 0. \ A_j \models \Phi \right\}$$

- Φ is called an <u>invariant condition</u> of P_{inv}
- Note that
 - $TS \vDash P_{inv} \quad \text{iff} \quad trace(\pi) \in P_{inv} \text{ for all paths } \pi \text{ in } TS \\ \text{iff} \quad L(s) \vDash \Phi \text{ for all states } s \text{ that belong to a path of } TS \\ \text{iff} \quad L(s) \vDash \Phi \text{ for all states } s \in Reach(TS) \end{cases}$
- Φ has to be fulfilled by all initial states and
 - satisfaction of Φ is invariant under all transitions in the reachable fragment of *TS*

Checking an invariant

- Checking an invariant for the propositional formula Φ
 - = check the validity of Φ in every reachable state
 - ⇒ use a slight modification of standard graph traversal algorithms (DFS and BFS)
 - provided the given transition system TS is <u>finite</u>
- Perform a forward depth-first search
 - at least one state *s* is found with $s \notin \Phi \Rightarrow$ the invariance of Φ is violated
- Alternative: backward search
 - starts with all states where Φ does not hold
 - calculates (by a DFS or BFS) the set $\bigcup_{s \in S, s \neq \Phi} Pre^*(s)$

A naive invariant checking algorithm

Require: finite transition system *TS* and propositional formula Φ **Ensure:** true if *TS* satisfies the invariant "always Φ ", otherwise false

```
set of state R := Ø; {the set of visited states}
stack of state U := ε; {the empty stack}
bool b := true; {all states in R satisfy Φ}
for all s ∈ I do
    if s ∉ R then
        visit(s) {perform a dfs for each unvisited initial state}
    end if
end for
return b
```

A naive invariant checking algorithm

```
process visit (state s)
 push(s, U); {push s on the stack}
 R := R \cup \{s\}; \{\text{mark } s \text{ as reachable}\}
 repeat
    s' := top(U);
    b := b \land (s' \models \Phi); {check validity of \Phi in s'}
    if Post(s') \subseteq R then
        pop(U);
    else
        let s'' \in Post(s') \setminus R
        push(s'', U);
        R := R \cup \{s''\}; {state s'' is a new reachable state}
    end if
 until (U = \varepsilon) endproc
```

error indication is state refuting Φ

initial path fragment $s_0 s_1 s_2 \dots s_n$ with $s_i \models \Phi$ $(i \neq n)$ and $s_n \notin \Phi$ is more <u>useful</u>

Invariant checking by DFS

Require: finite transition system *TS* and propositional formula Φ **Ensure:** "yes" if *TS* \models "always Φ ", otherwise "no" plus a counterexample

```
set of states R := \emptyset; {the set of reachable states}

stack of states U := \varepsilon; {the empty stack}

bool b := true; {all states in R satisfy \Phi}

while (I \setminus R \neq \emptyset \land b) do

let s \in I \setminus R; {choose an arbitrary initial state not in R}

visit(s); {perform a DFS for each unvisited initial state}

end while

if b then

return("yes") {TS \models "always \Phi"}

else

return("no", reverse(U)) {counterexample arises from the stack content}
```

end if

Invariant checking by DFS

process visit (state s) *push*(*s*, *U*); {push *s* on the stack} $R := R \cup \{s\}; \{\text{mark } s \text{ as reachable}\}$ repeat s' := top(U); $b := b \land (s' \models \Phi)$; {check validity of Φ in s'} if $Post(s') \subseteq R$ then pop(U);else let $s'' \in Post(s') \setminus R$ push(s'', U); $R := R \cup \{s''\}$; {state s'' is a new reachable state} end if until $((U = \varepsilon) \lor \neg b)$ endproc

Time complexity

- Under the assumption that
 - ▶ $s' \in Post(s)$ can be encountered in time $\Theta(|Post(s)|)$
 - \Rightarrow this holds for a representation of *Post*(s) by adjacency lists
- The time complexity for invariant checking is $O(N * (1 + |\Phi|) + M)$
 - where N denotes the number of reachable states, and
 - $M = \sum_{s \in S} |Post(s)|$ the number of transitions in the reachable fragment of *TS*
- The adjacency lists are typically given implicitly
 - e.g., by a syntactic description of the concurrent processes as program graphs
 - Post(s) is obtained by the rules for the transition relation

Safety properties

- Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states only
- A safety property which is not an invariant:
 - consider a cash dispenser, also known as automated teller machine (ATM)
 - property "money can only be withdrawn once a correct PIN has been provided"
 - ⇒ not an invariant, since it is not a state property
- But a safety property:
 - any infinite run violating the property has a finite prefix that is "bad"
 - i.e., in which money is withdrawn without issuing a PIN before

Safety properties

- LT property P_{safe} over AP is a <u>safety property</u> if
 - ► for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{safe} \cap \underbrace{\left\{\sigma' \in \left(2^{AP}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma'\right\}}_{\checkmark} = \varnothing$$

all possible extensions of $\widehat{\sigma}$

- any such finite word $\hat{\sigma}$ is called a bad prefix for P_{safe}
- Minimal bad prefix for P_{safe}:
 - is a bad prefix $\hat{\sigma}$ for P_{safe} for which no proper prefix of $\hat{\sigma}$ is a bad prefix for P_{safe}
 - ⇒ minimal bad prefixes are bad prefixes of minimal length

Safety properties and finite traces

For transition system *TS* without terminal states and safety property P_{safe} :

 $TS \vDash P_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$

where $BadPref(P_{safe})$ is the set of bad prefixes of P_{safe}

Closure

• For trace $\sigma \in (2^{AP})^{\omega}$, let $pref(\sigma)$ be the set of <u>finite prefixes</u> of σ :

 $pref(\sigma) = \{ \widehat{\sigma} \in (2^{AP})^* \mid \widehat{\sigma} \text{ is a finite prefix of } \sigma \}$

• if
$$\sigma = A_0 A_1 \dots$$
 then $pref(\sigma) = \{\varepsilon, A_0, A_0 A_1, A_0 A_1 A_2, \dots\}$ is infinite

- For property *P* this is lifted as follows: $pref(P) = \bigcup_{\sigma \in P} pref(\sigma)$
- The <u>closure</u> of LT property *P*:

$$closure(P) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid pref(\sigma) \subseteq pref(P) \right\}$$

- the set of infinite traces whose finite prefixes are also prefixes of P, or
- infinite traces in the closure of P do not have a prefix that is not a prefix of P

Safety properties and closures

LT property P over AP is a safety property

if and only if closure(P) = P

Finite trace equivalence and safety properties

For *TS* and *TS*′ be transition systems (over *AP*) without terminal states:

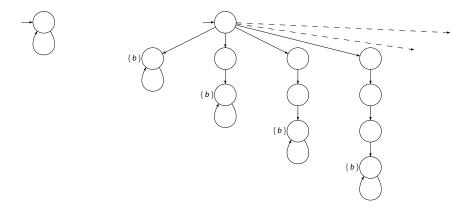
 $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$ if and only if for any safety property $P_{safe} : TS' \vDash P_{safe} \Rightarrow TS \vDash P_{safe}$

Traces_{fin}(TS) = Traces_{fin}(TS') if and only if TS and TS' satisfy the same safety properties

For *TS* without terminal states and finite *TS'* trace inclusion and finite-trace inclusion coincide

this does not hold for infinite *TS*' (cf. next slide) but also holds for image-finite *TS*'

Trace inclusion *≠* finite trace inclusion



Why liveness?

- Safety properties specify that "something bad never happens"
- Doing nothing easily fulfills a safety property
 - as this will never lead to a "bad" situation
- ⇒ Safety properties are complemented by liveness properties
 - that require some progress
 - Liveness properties assert that:
 - "something good" will happen eventually [Lamport 1977]

The meaning of liveness

[Lamport 2000]

The question of whether a real system satisfies a liveness property is meaningless; it can be answered only by observing the system for an infinite length of time, and real systems don't run forever.

Liveness is always an approximation to the property we really care about. We want a program to terminate within 100 years, but proving that it does would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates. This doesn't prove that the program will terminate within our lifetimes, but it does demonstrate the absence of infinite loops.

Liveness properties

LT property *P*_{live} over *AP* is a <u>liveness</u> property whenever

$$pref(P_{live}) = (2^{AP})^*$$

- A liveness property is an LT property
 - that does not rule out any prefix
- Liveness properties are violated in "infinite time"
 - whereas safety properties are violated in finite time
 - finite traces are of no use to decide whether P holds or not
 - any finite prefix can be extended such that the resulting infinite trace satisfies P