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REVIEW: Channel systems

A program graph over (Var, Chan) is a tuple

PG = (Loc,Act, Effect,→, Loc0, g0)

where

→ ⊆ Loc × (Cond(Var) × Act) × Loc ∪ Loc × Comm × Loc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

communication actions

A channel system CS over (⋃0<i≤n Vari , Chan):

CS = [PG1 ∣ . . . ∣ PGn]
with program graphs PGi over (Vari , Chan)



REVIEW: Transition system semantics of a channel system

Let CS = [PG1 ∣ . . . ∣ PGn] be a channel system over (Chan, Var)with
PGi = (Loci ,Acti , Effecti ,↝i , Loc0,i , g0,i) , for 0 < i ≤ n

TS(CS) is the transition system (S,Act,→, I,AP, L)where:
▸ S = (Loc1 × ⋅ ⋅ ⋅ × Locn) × Eval(Var) × Eval(Chan)
▸ Act = (⊎0<i≤n Acti) ⊎ { τ }
▸ → is defined by the inference rules on the next slides

▸ I = { ⟨ℓ1 , . . . , ℓn , η, ξ0⟩ ∣ ∀i. (ℓi ∈ Loc0,i & η ⊧ g0,i) & ∀c. ξ0(c) = ε }
▸ AP = ⊎0<i≤n Loci ⊎ Cond(Var)
▸ L(⟨ℓ1 , . . . , ℓn , η, ξ⟩) = { ℓ1 , . . . , ℓn } ∪ {g ∈ Cond(Var) ∣ η ⊧ g}



REVIEW: Inference rules (I)

▸ Interleaving for α ∈ Acti:

ℓi
g∶α−−−→ ℓ

′
i ∧ η ⊧ g

⟨ℓ1, . . . , ℓi , . . . , ℓn, η, ξ⟩ α−−→ ⟨ℓ1, . . . , ℓ′i , . . . , ℓn, η′, ξ⟩
where η′ = Effect(α, η)

▸ Synchronous message passing over c ∈ Chan, cap(c) = 0:

ℓi
c?x−−−→ ℓ

′
i ∧ ℓj

c!v−−−→ ℓ
′
j ∧ i ≠ j

⟨ℓ1, . . . , ℓi , . . . , ℓj , . . . , ℓn, η, ξ⟩ τ−−→ ⟨ℓ1, . . . , ℓ′i , . . . , ℓ′j , . . . , ℓn, η′, ξ⟩
where η′ = η[x ∶= v].



REVIEW: Inference rules (II)

▸ Asynchronous message passing for c ∈ Chan, cap(c) > 0:
▸ receive a value along channel c and assign it to variable x:

ℓi
c?x
−−−→ ℓ

′
i ∧ len(ξ(c)) = k > 0 ∧ ξ(c) = v1 . . . vk

⟨ℓ1 , . . . , ℓi , . . . , ℓn , η, ξ⟩ τ
−−→ ⟨ℓ1 , . . . , ℓ′i , . . . , ℓn , η′ , ξ′⟩

where η′ = η[x ∶= v1] and ξ′ = ξ[c ∶= v2 . . . vk].
▸ transmit value v ∈ dom(c) over channel c:

ℓi
c!v
−−−→ ℓ

′
i ∧ len(ξ(c)) = k < cap(c) ∧ ξ(c) = v1 . . . vk

⟨ℓ1 , . . . , ℓi , . . . , ℓn , η, ξ⟩ τ
−−→ ⟨ℓ1 , . . . , ℓ′i , . . . , ℓn , η, ξ′⟩

where ξ′ = ξ[c ∶= v1 v2 . . . vk v].



REVIEW: nanoPromela

nanoPromela-program P = [P1∣ . . . ∣Pn]with Pi processes
A process is specified by a statement:

stmt ∶∶= skip ∣ x ∶= expr ∣ c?x ∣ c!expr ∣
stmt1 ; stmt2 ∣ atomic{assignments} ∣
if ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn fi ∣
do ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn od

assignments ∶∶= x1 ∶= expr1 ; x2 ∶= expr2 ; . . . ; xm ∶= exprm

x is a variable in Var, expr an expression and c a channel, gi a guard

assume the Promela specification is type-consistent



REVIEW: Peterson’s algorithm

The nanoPromela-code of process P1 is given by the statement:

do ∶∶ true ⇒ skip;

atomic{b1 ∶= true; x ∶= 2};
if ∶∶ (x = 1) ∨ ¬b2 ⇒ crit1 ∶= true fi

atomic{crit1 ∶= false;b1 ∶= false}
od



Formal semantics

The semantics of a nanoPromela-statement over (Var, Chan) is a
program graph over (Var, Chan).
The program graphs PG1, . . . , PGn for the processes P1, . . . ,Pn of a
nanoPromela-program P = [P1∣ . . . ∣Pn] constitute a channel
system over (Var, Chan)



Example

loop = do ∶∶ x > 1 ⇒ y ∶= x + y

∶∶ y < x ⇒ x ∶= 0; y ∶= x

od

y ∶= x; loop loop exit

true ∶ y ∶= x

y < x ∶ x ∶= 0

¬(x > 1) ∧ ¬(y < x)

x > 1 ∶ y ∶= x + y



Substatements

▸ substatements: potential locations of intermediate states

during the execution of a statement.

▸ for stmt ∈ {skip, x ∶= expr, c?x, c!expr}:
sub(stmt) = {stmt, exit}

▸ sub(stmt1; stmt2) ={stmt′; stmt2 ∣ stmt′ ∈ sub(stmt1) ∖ {exit}} ∪ sub(stmt2)
▸ for cond_cmd = if ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn fi,

sub(cond_cmd) = {stmt} ∪ ⋃
1≤i≤n

sub(stmti)
▸ for loop = do ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn od,

sub(loop) = {loop, exit} ∪
⋃

1≤i≤n

{stmt′; loop ∣ stmt′ ∈ sub(stmti) ∖ {exit}}



Inference rules

skip
true: id−−−−−−−→exit

where id denotes an action that does not change the values of the

variables

x ∶= expr
true ∶ assign(x, expr)−−−−−−−−−−−−−−−−−−−→ exit

assign(x, expr) denotes the action that only changes x, no other variables

c?x c?x−−−→ exit c!expr
c!expr−−−−−−→ exit



Inference rules

atomic{x1 ∶= expr1; . . . ; xm ∶= exprm} true ∶ αm−−−−−−−−→ exit

where α0 = id, αi = Effect(assign(xi , expri), Effect(αi−1 , η)) for 1 ≤ i ≤ m

stmt1
g∶α−−−→ stmt′1 /= exit

stmt1; stmt2
g∶α−−−→ stmt′1; stmt2

stmt1
g∶α−−−→exit

stmt1; stmt2
g∶α−−−→ stmt2



Inference rules

stmti
h∶α−−−→ stmt′i

cond_cmd
gi∧h∶α−−−−−−→ stmt′i

stmti
h∶α−−−→ stmt′i /= exit

loop
gi∧h∶α−−−−−−→ stmt′i ; loop

stmti
h∶α−−−→exit

loop
gi∧h∶α−−−−−−→ loop

loop
¬g1∧...∧¬gn−−−−−−−−−−→ exit



The state-space explosion problem

▸ The# states of a simple program graph is:

∣#program locations ∣ ⋅ ∏
variable x

∣dom(x) ∣

⇒ number of states grows exponentially in the number of

program variables
▸ N variables with k possible values each yields kN states

▸ A program with 10 locations, 3 bools, 5 integers

(in range 0 . . . 9):

10 ⋅ 23 ⋅ 105 = 800, 000 states

▸ Adding a single 50-positions bit-array yields 800, 000⋅250 states



Concurrent programs

▸ The# states of P ≡ P1 ∣∣ . . . ∣∣ Pn is maximally:

#states of P1 × . . . ×#states of Pn

⇒ # states grows exponentially with the number of components

▸ The composition of N components of size k each yields kN

states



Channel systems

▸ Asynchronous communication of processes via channels
▸ each channel c has a bounded capacity cap(c)
▸ if a channel has capacity 0, we obtain handshaking

▸ # states of system with N components and K channels is:

N

∏
i=1

(∣#program locations∣ ∏
variable x

∣dom(x)∣)⋅ K∏
j=1

∣dom(cj)∣cap(cj)

this is the underlying structure of Promela



The alternating bit protocol

!

snd_msg(0) st_tmr(0) wait(0) chk_ack(0)

snd_msg(1)st_tmr(1)wait(1)chk_ack(1)

c!⟨m, 0⟩

lost

tmr_on

d?x

timeout

x = 1

x = 0 ∶

tmr_off

c!⟨m, 1⟩

lost

tmr_on

timeout

d?x

x = 0

x = 1 ∶

tmr_off

channel capacity 10, and datums are bits,

yields 2⋅8⋅6⋅410⋅210 = 3⋅235 ≈ 1011 states



Summary: Transition Systems

▸ Transition systems are fundamental for modeling software and

hardware

▸ Interleaving = execution of independent concurrent processes by

nondeterminism

▸ For shared variable communication use composition on program

graphs

▸ Handshaking on a set H of actions amounts to

▸ executing action /∈ H autonomously (= interleaving)
▸ those in H simultaneously

▸ Channel systems = program graphs + first-in first-out

communication channels

▸ handshaking for channels of capacity 0
▸ asynchronous message passing when capacity exceeds 0
▸ semantical model of Promela

▸ Size of transition systems grows exponentially

▸ in the number of concurrent components and the number of

variables



Linear-Time Properties



REVIEW: model checking

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient

memory

counterexample
Simulation

location
error

system

violated +

Model Checking

requirements

Formalizing Modeling

systemmodel
property

specification



REVIEW: executions

▸ A finite execution fragment ρ of TS is an alternating sequence

of states and actions ending with a state:

ρ = s0 α1 s1 α2 . . . αn sn such that si
αi+1
−−−−→ si+1 for all 0 ≤ i < n.

▸ An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1
−−−−→ si+1 for all 0 ≤ i.

▸ An execution of TS is an initial, maximal execution fragment
▸ a maximal execution fragment is either finite ending in a

terminal state, or infinite
▸ an execution fragment is initial if s0 ∈ I



State graph

▸ The state graph of TS, notation G(TS), is the digraph (V , E)
with vertices V = S and edges E = {(s, s′) ∈ S × S ∣ s′ ∈ Post(s)}

⇒ omit all state and transition labels in TS and ignore being initial

▸ Post∗(s) is the set of states reachable G(TS) from s

Post∗(C) = ⋃
s∈C

Post∗(s) for C ⊆ S

▸ The notations Pre∗(s) and Pre∗(C) have analogous meaning

▸ The set of reachable states: Reach(TS) = Post∗(I)



Path fragments

▸ A path fragment is an execution fragment without actions

▸ A finite path fragment π̂ of TS is a state sequence:

π̂ = s0 s1 . . . sn such that si+1 ∈ Post(si) for all 0 ≤ i < nwhere n ≥ 0

▸ An infinite path fragment π of TS is an infinite state sequence:

π = s0 s1 s2 . . . such that si+1 ∈ Post(si) for all i ≥ 0

▸ A path of TS is an initial, maximal path fragment
▸ a maximal path fragment is either finite ending in a terminal

state, or infinite
▸ a path fragment is initial if s0 ∈ I
▸ Paths(s) is the set of maximal path fragments π with first(π) = s



Traces

▸ Actions are mainly used to model the (possibility of)
interaction

▸ synchronous or asynchronous communication

▸ Here, focus on the states that are visited during executions
▸ the states themselves are not ‘‘observable’’, but just their

atomic propositions

▸ Consider sequences of the form L(s0) L(s1) L(s2) . . .
▸ just register the (set of) atomic propositions that are valid along

the execution
▸ instead of execution s0

α0−−−→ s1
α1−−−→ s2 . . .

⇒ this is called a trace

▸ For a transition system without terminal states:

▸ traces are infinite words over the alphabet 2AP, i.e., they are in

(2AP)ω



Traces

▸ Let transition system TS = (S,Act,→, I,AP, L)without terminal
states

▸ all maximal paths (and excutions) are infinite

▸ The trace of path fragment π = s0 s1 . . . is
trace(π) = L(s0) L(s1) . . .

▸ the trace of π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn)
▸ The set of traces of a set Π of paths:

trace(Π) = { trace(π) ∣ π ∈ Π }
▸ Traces(s) = trace(Paths(s)) Traces(TS) = ⋃s∈I Traces(s)
▸ Tracesfin(s) = trace(Pathsfin(s)) Tracesfin(TS) = ⋃s∈I Tracesfin(s)



Semaphore-based mutual exclusion

wait1

crit1

noncrit1

y ∶= y+1

y ∶= y−1

y > 0 ∶

wait2

crit2

noncrit2

y ∶= y+1

y ∶= y−1

y > 0 ∶

PG1 ∶ PG2 ∶

y=0 means ‘‘lock is currently possessed’’; y=1 means ‘‘lock is free’’



Transition system TS(PG1 ∣∣∣PG2)

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

y ∶= y−1

y ∶= y−1

y ∶= y+1

y ∶= y+1



Example traces

Let AP = { crit1, crit2 }
Example path:

π = ⟨n1 , n2 , y = 1⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨c1 , n2 , y = 0⟩→
⟨n1 , n2 , y = 1⟩→ ⟨n1 ,w2 , y = 1⟩→ ⟨n1 , c2 , y = 0⟩→ . . .

The trace of this path is the infinite word:

trace(π) = ∅∅{ crit1 }∅∅{ crit2 }∅∅{ crit1 }∅∅{ crit2 } . . .
The trace of the finite path fragment:

π̂ = ⟨n1 , n2 , y = 1⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨w1 ,w2 , y = 1⟩→
⟨w1 , c2 , y = 0⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨c1 , n2 , y = 0⟩

is:

trace(π̂) = ∅∅∅{ crit2 }∅{ crit1 }



Linear-time properties

▸ Linear-time properties specify the traces that a TS may exhibit
▸ LT-property specifies the admissible behaviour of system under

consideration

later, a logic will be introduced for specifying LT properties

▸ A linear-time property (LT property) over AP is

a subset of (2AP)ω
▸ finite words are not needed, as it is assumed that there are

no terminal states

▸ TS (over AP) satisfies LT property P (over AP):

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS satisfies the LT property P if all its ‘‘observable’’ behaviors are

admissible
▸ state s ∈ S satisfies P, notation s ⊧ P, whenever Traces(s) ⊆ P



How to specify mutual exclusion?

‘‘Always at most one process is in its critical section’’

▸ Let AP = { crit1, crit2 }
▸ other atomic propositions are not of any relevance for this

property

▸ Formalization as LT property

Pmutex = set of infinite words A0 A1 A2 . . .

with { crit1 , crit2 } /⊆ Ai for all 0 ≤ i

▸ Contained in Pmutex are e.g., the infinite words:
▸ ({ crit1 }{ crit2 })ω and { crit1 }{ crit1 }{ crit1 } . . . and ∅∅∅ . . .

▸ but not { crit1 }∅{ crit1 , crit2 } . . . or
∅{ crit1 },∅∅{ crit1 , crit2 }∅ . . .

Does the semaphore-based algorithm satisfy Pmutex?



Does the semaphore-based algorithm satisfy Pmutex?

⟨n1 , n2 , y=1⟩

∅

⟨w1 , n2 , y=1⟩

∅

⟨n1 ,w2 , y=1⟩

∅

⟨c1 , n2 , y=0⟩ { crit1 } ⟨w1 ,w2 , y=1⟩

∅

⟨n1 , c2 , y=0⟩{ crit2 }

⟨c1 ,w2 , y=0⟩{ crit1 } ⟨w1 , c2 , y=0⟩ { crit2 }

Yes as there is no reachable state labeled with { crit1 , crit2 }



How to specify starvation freedom?

‘‘A process that wants to enter the critical section is eventually able

to do so‘’’

▸ Let AP = {wait1, crit1,wait2, crit2 }
▸ Formalization as LT-property

Pnostarve = set of infinite words A0 A1 A2 . . . such that:

(∞∃ j. waiti ∈ Aj ) ⇒ (∞∃ j. criti ∈ Aj ) for each i ∈ {1, 2}

there exist infinitely many:

(∞∃ j.waiti ∈ Aj) ≡ (∀k ≥ 0. ∃j > k.waiti ∈ Aj)

Does the semaphore-based algorithm satisfy Pnostarve?



Does the semaphore-based algorithm satisfy Pnostarve?

⟨n1 , n2 , y=1⟩

∅

⟨w1 , n2 , y=1⟩

{wait1 }

⟨n1 ,w2 , y=1⟩

{wait2 }

⟨c1 , n2 , y=0⟩ { crit1 } ⟨w1 ,w2 , y=1⟩

{wait1 ,wait2 }

⟨n1 , c2 , y=0⟩{ crit2 }

⟨c1 ,w2 , y=0⟩{ crit1 ,wait2 } ⟨w1 , c2 , y=0⟩ {wait1 , crit2 }

No. Trace ∅ ({wait2 }{wait1 ,wait2 }{ crit1 ,wait2 } )ω ∈ Traces(TS), but/∈ Pnostarve



Mutual exclusion algorithm revisited

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

this algorithm satisfies Pmutex



Refining the mutual exclusion algorithm

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

this variant algorithm with an omitted edge also satisfies Pmutex



Trace equivalence and LT properties

For TS and TS′ be transition systems (over AP) without terminal states:

Traces(TS) ⊆ Traces(TS′)
if and only if

for any LT property P: TS′ ⊧ P implies TS ⊧ P

Traces(TS) = Traces(TS′)
if and only if

TS and TS′ satisfy the same LT properties



Two beverage vending machines

pay

selectsprite beerτ
τ

pay

select1 select2sprite beer

τ
τ

AP = {pay, sprite, beer }
there is no LT-property that can distinguish between these machines



Invariants

▸ Safety properties ≈ ‘‘nothing bad should happen’’ [Lamport 1977]

▸ Typical safety property: mutual exclusion property
▸ the bad thing (having > 1 process in the critical section) never

occurs

▸ Another typical safety property is deadlock freedom

⇒ These properties are in fact invariants
▸ An invariant is an LT property

▸ that is given by a conditionΦ for the states
▸ and requires thatΦ holds for all reachable states
▸ e.g., for mutex propertyΦ ≡ ¬crit1 ∨ ¬crit2



Invariants

▸ An LT property Pinv over AP is an invariant if there is a

propositional logic formulaΦ over AP such that:

Pinv = { A0A1A2 . . . ∈ (2AP)ω ∣ ∀j ≥ 0. Aj ⊧ Φ }

▸ Φ is called an invariant condition of Pinv

▸ Note that
TS ⊧ Pinv iff trace(π) ∈ Pinv for all paths π in TS

iff L(s) ⊧ Φ for all states s that belong to a path of TS

iff L(s) ⊧ Φ for all states s ∈ Reach(TS)
▸ Φ has to be fulfilled by all initial states and

▸ satisfaction ofΦ is invariant under all transitions in the

reachable fragment of TS



Checking an invariant

▸ Checking an invariant for the propositional formulaΦ

= check the validity ofΦ in every reachable state

⇒ use a slight modification of standard graph traversal algorithms

(DFS and BFS)
▸ provided the given transition system TS is finite

▸ Perform a forward depth-first search
▸ at least one state s is found with s /⊧ Φ⇒ the invariance ofΦ is

violated

▸ Alternative: backward search
▸ starts with all states whereΦ does not hold
▸ calculates (by a DFS or BFS) the set⋃s∈S,s/⊧Φ Pre∗(s)



A naive invariant checking algorithm

Require: finite transition system TS and propositional formulaΦ

Ensure: true if TS satisfies the invariant ’’alwaysΦ’’, otherwise false

set of state R ∶= ∅; {the set of visited states}

stack of state U ∶= ε; {the empty stack}

bool b ∶= true; {all states in R satisfyΦ}

for all s ∈ I do
if s ∉ R then

visit(s) {perform a dfs for each unvisited initial state}

end if

end for

return b



A naive invariant checking algorithm
process visit (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s}; {mark s as reachable}

repeat

s′ ∶= top(U);
b ∶= b ∧ (s′ ⊧ Φ); {check validity ofΦ in s′}

if Post(s′) ⊆ R then

pop(U);
else

let s′′ ∈ Post(s′) ∖ R

push(s′′ ,U);
R ∶= R ∪ { s′′ }; {state s′′ is a new reachable state}

end if

until (U = ε) endproc

error indication is state refuting Φ

initial path fragment s0 s1 s2 . . . sn with si ⊧ Φ (i ≠ n) and sn /⊧ Φ is more

useful



Invariant checking by DFS

Require: finite transition system TS and propositional formulaΦ

Ensure: ’’yes’’ if TS ⊧ ’’alwaysΦ’’, otherwise ’’no’’ plus a counterexample

set of states R ∶= ∅; {the set of reachable states}
stack of states U ∶= ε; {the empty stack}

bool b ∶= true; {all states in R satisfyΦ}

while (I ∖ R ≠ ∅ ∧ b) do
let s ∈ I ∖ R; {choose an arbitrary initial state not in R}

visit(s); {perform a DFS for each unvisited initial state}

end while

if b then

return(’’yes’’) {TS ⊧ ’’alwaysΦ’’}

else

return(’’no’’, reverse(U)) {counterexample arises from the stack content}

end if



Invariant checking by DFS

process visit (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s}; {mark s as reachable}

repeat

s′ ∶= top(U);
b ∶= b ∧ (s′ ⊧ Φ); {check validity ofΦ in s′}

if Post(s′) ⊆ R then

pop(U);
else

let s′′ ∈ Post(s′) ∖ R

push(s′′ ,U);
R ∶= R ∪ { s′′ }; {state s′′ is a new reachable state}

end if

until ((U = ε) ∨ ¬b) endproc



Time complexity

▸ Under the assumption that
▸ s′ ∈ Post(s) can be encountered in timeΘ(∣Post(s)∣)
⇒ this holds for a representation of Post(s) by adjacency lists

▸ The time complexity for invariant checking isO(N ∗ (1 + ∣Φ∣) +M )
▸ where N denotes the number of reachable states, and
▸ M = ∑s∈S ∣Post(s)∣ the number of transitions in the reachable

fragment of TS

▸ The adjacency lists are typically given implicitly
▸ e.g., by a syntactic description of the concurrent processes as

program graphs
▸ Post(s) is obtained by the rules for the transition relation



Safety properties

▸ Safety properties may impose requirements on finite path
fragments

▸ and cannot be verified by considering the reachable states only

▸ A safety property which is not an invariant:
▸ consider a cash dispenser, also known as automated teller

machine (ATM)
▸ property ‘‘money can only be withdrawn once a correct PIN has

been provided’’

⇒ not an invariant, since it is not a state property

▸ But a safety property:
▸ any infinite run violating the property has a finite prefix that is

‘‘bad’’
▸ i.e., in which money is withdrawn without issuing a PIN before



Safety properties

▸ LT property Psafe over AP is a safety property if

▸ for all σ ∈ (2AP)ω ∖ Psafe there exists a finite prefix σ̂ of σ such

that:

Psafe ∩ {σ ′ ∈ (2AP)ω ∣ σ̂ is a prefix of σ ′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

all possible extensions of σ̂

= ∅

▸ any such finite word σ̂ is called a bad prefix for Psafe

▸ Minimal bad prefix for Psafe:
▸ is a bad prefix σ̂ for Psafe for which no proper prefix of σ̂ is a bad

prefix for Psafe
⇒ minimal bad prefixes are bad prefixes of minimal length



Safety properties and finite traces

For transition system TSwithout terminal states

and safety property Psafe:

TS ⊧ Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

where BadPref(Psafe) is the set of bad prefixes of Psafe



Closure

▸ For trace σ ∈ (2AP)ω, let pref(σ) be the set of finite prefixes of σ :
pref(σ) = { σ̂ ∈ (2AP)∗ ∣ σ̂ is a finite prefix of σ }

▸ if σ = A0 A1 . . . then pref(σ) = {ε,A0 ,A0A1 ,A0A1A2 , . . . } is
infinite

▸ For property P this is lifted as follows: pref(P) = ⋃σ∈P pref(σ)
▸ The closure of LT property P:

closure(P) = {σ ∈ (2AP)ω ∣ pref(σ) ⊆ pref(P)}

▸ the set of infinite traces whose finite prefixes are also prefixes of

P, or
▸ infinite traces in the closure of P do not have a prefix that is not

a prefix of P



Safety properties and closures

LT property P over AP is a safety property

if and only if closure(P) = P



Finite trace equivalence and safety properties

For TS and TS′ be transition systems (over AP) without terminal states:

Tracesfin(TS) ⊆ Tracesfin(TS′)
if and only if

for any safety property Psafe ∶ TS
′
⊧ Psafe ⇒ TS ⊧ Psafe

Tracesfin(TS) = Tracesfin(TS′)
if and only if

TS and TS′ satisfy the same safety properties



Finite vs. infinite traces

For TSwithout terminal states and finite TS′

trace inclusion and finite-trace inclusion coincide

this does not hold for infinite TS′ (cf. next slide)

but also holds for image-finite TS′



Trace inclusion ≠ finite trace inclusion

{b}

{b}

{b}

{b}

Traces(TS) /⊆ Traces(TS′) and Tracesfin(TS) ⊆ Tracesfin(TS′)



Why liveness?

▸ Safety properties specify that ‘‘something bad never happens’’

▸ Doing nothing easily fulfills a safety property
▸ as this will never lead to a ‘‘bad’’ situation

⇒ Safety properties are complemented by liveness properties
▸ that require some progress

▸ Liveness properties assert that:
▸ ’’something good’’ will happen eventually [Lamport 1977]



The meaning of liveness

[Lamport 2000]

The question of whether a real system satisfies a liveness property

is meaningless; it can be answered only by observing the system for

an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about.

We want a program to terminate within 100 years, but proving that it does

would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates.

This doesn’t prove that the program will terminate within our lifetimes,

but it does demonstrate the absence of infinite loops.



Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) = (2AP)∗

▸ A liveness property is an LT property
▸ that does not rule out any prefix

▸ Liveness properties are violated in ‘‘infinite time’’
▸ whereas safety properties are violated in finite time
▸ finite traces are of no use to decide whether P holds or not
▸ any finite prefix can be extended such that the resulting infinite

trace satisfies P


