#### Verification

Lecture 27

Bernd Finkbeiner Peter Faymonville Michael Gerke



## **Abstraction**

local  $y_1, y_2$  : integer where  $y_1 = y_2 = 0$ loop forever do  $[\ell_0: \mathbf{noncritical}_{\leqslant}]$  $\ell_1: y_1 := y_2 + 1$  $|\ell_2$ : **await**  $(y_2 = 0 \lor y_1 \le y_2)$  $\ell_3$ : critical  $\blacksquare_{\rightarrow}$  $\ell_4: y_1 := 0$ loop forever do  $m_0$ : **noncritical**  $m_1: y_2 := y_1 + 1$  $m_2$ : **await**  $(y_1 = 0 \lor y_2 < y_1)$  $m_3$ : critical  $\blacksquare$  $m_4: y_2 := 0$ 

local  $b_1, b_2, b_3$ : boolean where  $b_1, b_2, b_3$ loop forever do  $\ell_0$ : noncritical  $\ell_1: (b_1, b_3) := (false, false)$  $\ell_2$ : await  $(b_2 \lor b_3)$  $\ell_3$ : critical  $\blacksquare_2$  $|\ell_4: (b_1, b_3) := (true, true)|$ loop forever do  $m_0$ : noncritical  $m_1: (b_2, b_3) := (false, true)$  $m_2$ : await  $(b_1 \lor \neg b_3)$  $m_3$ : critical  $\blacksquare$  $|m_4: (b_2, b_3) := (true, b_1)$ 

## **REVIEW: Simulation order**

Let  $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$ , i=1, 2, be two transition systems over *AP*.

A <u>simulation</u> for  $(TS_1, TS_2)$  is a binary relation  $\mathcal{R} \subseteq S_1 \times S_2$  such that:

1. 
$$\forall q_1 \in I_1 \exists q_2 \in I_2. (q_1, q_2) \in \mathcal{R}$$

2. for all 
$$(q_1, q_2) \in \mathcal{R}$$
 it holds:  
2.1  $L_1(q_1) = L_2(q_2)$ 

2.2 if  $q'_1 \in Post(q_1)$ then there exists  $q'_2 \in Post(q_2)$  with  $(q'_1, q'_2) \in \mathcal{R}$ 

### **REVIEW: Simulation order and ∀CTL\***

Let *TS* be a finite transition system (without terminal states) and *q*, *q'* states in *TS*. The following statements are equivalent: (1)  $q \leq_{TS} q'$ (2) for all  $\forall$ CTL\*-formulas  $\Phi: q' \models \Phi$  implies  $q \models \Phi$ (3) for all  $\forall$ CTL-formulas  $\Phi: q' \models \Phi$  implies  $q \models \Phi$ 

### **Proof Rules as Abstractions**



- $AP = \{q\}$
- TA:  $S = I = \{s_q\}; s_q \rightarrow s_q$
- Simulation:  $R=((t,s_q) | t | = \phi)$

### **Predicate Abstraction**

Abstraction is determined by a set of predicates,

$$P=\{\phi_1, \phi_2, \dots, \phi_N\}$$

- Abstract state space: subsets of P
- Abstraction function  $f(q) = \{\phi_i | q \models \phi_i\}$

local  $y_1, y_2$  : integer where  $y_1 = y_2 = 0$ loop forever do  $[\ell_0: \mathbf{noncritical}_{\odot}]$  $\ell_1: y_1 := y_2 + 1$  $|\ell_2$ : **await**  $(y_2 = 0 \lor y_1 \le y_2)$  $\ell_3$ : critical  $\blacksquare$  $\ell_4: y_1 := 0$ loop forever do  $m_0$ : **noncritical**  $m_1: y_2 := y_1 + 1$  $m_2$ : **await**  $(y_1 = 0 \lor y_2 < y_1)$  $m_3$ : critical  $\square$  $m_4: y_2 := 0$ 

Predicates: guards of transitions  $P = \{b_1, b_2, b_3\} +$ control predicates with  $b_1: y1 = 0$  $b_2: y^2 = 0$  $b_3: y1 \le y2$ 

local  $y_1, y_2$  : integer where  $y_1 = y_2 = 0$ loop forever do  $[\ell_0: \mathbf{noncritical}_{\leqslant}]$  $\ell_1: y_1 := y_2 + 1$  $|\ell_2$ : **await**  $(y_2 = 0 \lor y_1 \le y_2)$  $\ell_3$ : critical  $\blacksquare_{\rightarrow}$  $\ell_4: y_1 := 0$ loop forever do  $m_0$ : **noncritical**  $m_1: y_2 := y_1 + 1$  $m_2$ : await  $(y_1 = 0 \lor y_2 < y_1)$  $m_3$ : critical  $\blacksquare$  $m_4: y_2 := 0$ 

local  $b_1, b_2, b_3$ : boolean where  $b_1, b_2, b_3$ loop forever do  $\ell_0$ : noncritical  $\ell_1: (b_1, b_3) := (false, false)$  $\ell_2$ : await  $(b_2 \lor b_3)$  $\ell_3$ : critical  $\blacksquare_2$  $|\ell_4: (b_1, b_3) := (true, true)$ loop forever do  $m_0$ : noncritical  $m_1: (b_2, b_3) := (false, true)$  $m_2$ : await  $(b_1 \lor \neg b_3)$  $m_3$ : critical  $\blacksquare$  $|m_4: (b_2, b_3) := (true, b_1)$ 

This abstraction allows us to prove

- mutual exclusion
- bounded overtaking

using a model checker, since it is a finite-state program.

local  $b_1, b_2, b_3$ : boolean where  $b_1, b_2, b_3$ loop forever do  $\ell_0$ : noncritical  $\ell_1: (b_1, b_3) := (false, false)$  $\ell_2$ : await  $(b_2 \lor b_3)$  $\ell_3$ : critical  $\square_2$  $\ell_4: (b_1, b_3) := (true, true)$ loop forever do  $m_0$ : noncritical  $m_1: (b_2, b_3) := (false, true)$  $m_2$ : **await**  $(b_1 \lor \neg b_3)$  $m_3$ : critical  $\blacksquare$  $m_4: (b_2, b_3) := (true, b_1)$ 

## **How To Determine the Basis?**

A good starting set:

- The atomic assertions appearing in the guards of the transitions (→ enabling conditions can be represented exactly, and thus fairness carries over)
- The atomic assertions appearing in the property to be proven (→ the property abstraction is exact)

Analysis of counterexamples may lead to refinement of the abstraction by adding more assertions to the basis.

## **Counter Example Guided Abstraction Refinement (CEGAR)**



## **Spurious counter examples**



## **Checking abstract error paths**

Let *E* be an assertion indicating an error state.

- An abstract counter example  $x_0 x_1 \dots x_k$  is **concretizable** if there exists a sequence of concrete states  $s_0 s_1 \dots s_k$ such that
- 1. For each  $0 \le i \le k$ ,  $f(s_i) = x_k$ .
- *2.*  $s_0 \models \Theta$  and  $s_k \models E$
- 3. For each  $0 \le i \le k$ ,  $(s_i, s_{i+1}) \models \rho$

### **Checking abstract error paths**

- 1. For each  $0 \le i \le k$ ,  $f(s_i) = x_k$ .
- *2.*  $s_0 \models \Theta$  and  $s_k \models E$
- 3. For each  $0 \le i \le k$ ,  $(s_i, s_{i+1}) \models \rho$

represented as a formula:

$$\Theta(\mathsf{V}^{0}) \wedge \bigwedge \bigwedge \varphi(\mathsf{V}^{i}) \wedge \bigwedge \rho(\mathsf{V}^{i},\mathsf{V}^{i+1}) \wedge \mathsf{E}(\mathsf{V}^{k})$$

$$\stackrel{i=0..k}{\longrightarrow} \phi \in \mathsf{X}_{i} \qquad \stackrel{i=0..k-1}{\longrightarrow} \phi \in \mathsf{X}_{i}$$

# **Craig Interpolation**

For a given pair of formulas  $\phi(X)$  and  $\psi(Y)$  such that  $\phi \land \psi$  is unsatisfiable,

a **Craig interpolant**  $\Delta(X \cap Y)$  is a formula over the common variables such that

 $\phi$  implies  $\Delta$  and  $\Delta \land \psi$  is unsatisfiable.

Craig interpolants can be automatically generated for many first-order theories.

## Path cutting

### Split formula

$$\Theta(\mathsf{V}^{0}) \land \bigwedge_{i=0..k} \bigwedge_{\phi \in \mathsf{X}_{i}} \phi(\mathsf{V}^{i}) \land \bigwedge_{i=0..k-1} \rho(\mathsf{V}^{i},\mathsf{V}^{i+1}) \land \mathsf{E}(\mathsf{V}^{k})$$

into two parts:

$$\phi_1 = \Theta(\mathsf{V}^0) \land \bigwedge_{i=0..j-1} \bigwedge_{\phi \in \mathsf{X}_i} \phi(\mathsf{V}^i) \land \bigwedge_{i=0..j-2} \rho(\mathsf{V}^i,\mathsf{V}^{i+1})$$

 $\phi_2 = \bigwedge_{i=j..k} \bigwedge_{\phi \in \mathbf{X}_i} \phi(\mathsf{V}^i) \land \bigwedge_{\rho(\mathsf{V}^i,\mathsf{V}^{i+1})} \land \mathsf{E}(\mathsf{V}^k)$ i=j-1..k-1 Use interpolant of  $\phi_1$  and  $\phi_2$  as new predicate.

### **Problem: abstract state space explosion**

Abstract state space grows exponentially with number of predicates



## **Slicing Abstractions**



## **Slicing Abstractions (SLAB)**



## **SLAB** abstractions

- Finite graphs
- Nodes labeled with sets of literals
- Edges labeled with sets of transitions
- Initial node, error node



### **Initial abstraction**

• need only *irreducible* error paths



Initial abstraction:



### Local refinement by node splitting



- $A \wedge B$  unsat, but A, B sat  $\rightsquigarrow$  Craig interpolant  $\eta$ :
  - $\boldsymbol{A} \vDash \eta, \boldsymbol{B} \vDash \neg \eta$
  - $Var(\eta) \subseteq Var(A) \cap Var(B)$ , i.e. values at  $q_2$

 $\rightsquigarrow$  split  $q_2$  with  $\eta, \neg \eta$ :



# **Slicing: Eliminating Nodes**

Inconsistent nodes



Unreachable nodes





## **Slicing: Eliminating transitions**

Inconsistent transitions

$$\rightarrow$$
 A  $\rightarrow$  B

 $A(V) \land \alpha(V,V') \land B(V')$  <u>unsatisfiable</u>

Empty Edges





### **Initial Abstraction**





| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$                             |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$                             |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$                             |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$                             |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$                             |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |

- 1. Error Path concretizable?
- 2. If yes: System incorrect
- 3. If no: Node split
  - Find minimal error path
  - Determine node to split
  - Determine splitting predicate



Error path concretizable?

 $\Phi(n0;request;n1;moveUp;n2) = n0(V^0) \land request(V^0,V^1) \land n1(V^1) \land moveUp(V^1,V^2) \land n2(V^2)$ 

is unsatisfiable  $\Rightarrow$  n0;request;n1;moveUp;n2 is not concretizable.



Error path minimal?

 $\Phi(n0;request;n1)$  is satisfiable.  $\Phi(n1;moveUp;n2)$  is satisfiable.

- $\Rightarrow$  n0;request;n1;moveUp;n2 is minimal.
- $\Rightarrow$  Split node n1.

## **Node Split**



## Interpolation

$$\begin{split} \Phi(\textbf{n0}; \textbf{request}; \textbf{n1}) &= \textbf{n0}(V^0) \land \textbf{request}(V^0, V^1) \land \textbf{n1}(V^1) & \underline{satisfiable} \\ \Phi(\textbf{moveUp}; \textbf{n2}) &= \textbf{moveUp}(V^1, V^2) \land \textbf{n1}(V^2) & \underline{satisfiable} \\ \Phi(\textbf{n0}; \textbf{request}; \textbf{n1}; \textbf{moveUp}; \textbf{n2}) &= \Phi(\textbf{n0}; \textbf{request}; \textbf{n1}) \land \Phi(\textbf{moveUp}; \textbf{n2}) \\ & \underline{unsatisfiable} \end{aligned}$$

- $\Rightarrow$  There exists a Craig interpolant  $\Delta^1$ , such that
- $\Phi(n0; request; n1) \Rightarrow \Delta^1$
- $\Phi(moveUp;n2) \Rightarrow \neg \Delta^1$
- Solution Variables(<sup>∆1</sup>) ⊆ V<sup>1</sup>

 $\Delta^1 = \mathbf{pc^1=1}$ 



# **Splitting**













## **Splitting**















### Split node n1 with req≤Max



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input$                                                  |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |



| init    | $pc=0 \land current \leq Max \land input \leq Max$                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| error   | current > Max                                                                                               |
| request | $pc=0 \land pc'=1 \land current'=current \land req'=input$                                                  |
| ready   | $pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$ |
| up      | $pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$                                |
| down    | $pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$                                |
| moveUp  | $pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$                            |
| moveDn  | $pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$                            |

### **Experiments: State Space**



### **Experiments: Runtime**



## **Verification diagrams as certificates**

- Add intermediate nodes for composite transitions (using strongest postcondition)
- Do not remove nodes that are not backward reachable but still forward-reachable



#### Review

Prof. Bernd Finkbeiner, Ph.D. Peter Faymonville, M.Sc. Michael Gerke, B.Sc.

#### Verification

Please write the names of all group members on the solutions you hand in.

#### **Problem 1: Invariance Diagrams**

Consider the transition system DEQUE in Figure 1, representing a ring buffer for a double-ended queue. The buffer consists of five cells (represented by integer variables), which can be either free (0) or occupied (1). Starting with a single occupied cell  $x_1$ , we can toggle a cell's state if the states of its neighbors differ.



Figure 1: DEQUE transition system.

Create an INVARIANCE diagram which proves for the DEQUE system that the state with all cells occupied is not reachable.

#### Hints:

- Keep it simple the verification diagram in the sample solution only has five nodes.
- State any auxiliary invariants needed to prove P-validity.
- You do not need to give proofs for individual verification conditions.

The following timed automaton satisfies EF on:



Each nonzeno timed automaton is timelock-free.

The state graph and the region graph of a timed automaton are bisimilar over AP'.

Clock equivalence is a bisimulation.

If there is a *P*-inductive program annotation, then *P* is partially correct.

It holds that

 $wp(F, assume c) = F \wedge c$ 

$$f(a) = f(b) \rightarrow a = b$$

is T<sub>E</sub>-satisfiable.

T<sub>E</sub> is decidable.

$$a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

is T<sub>A</sub>-valid.

The quantifier-free fragment of the theory of arrays with extensionality is decidable.

The limitations of the Nelson-Oppen method are as follows: Given formula *F* in theory  $T_1 \cup T_2$ .

- 1. F must be quantifier-free.
- 2. Signatures  $\Sigma_i$  of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

- 3. Theories  $T_1$ ,  $T_2$  must be stably infinite.
- 4. Theories  $T_1$ ,  $T_2$  must be <u>convex</u>.

The quantifier-free fragment of the theory of arrays with extensionality is stably infinite.

The quantifier-free fragment of the theory of arrays with extensionality is convex.

### A *P*-valid invariance diagram labeled with assertions $\varphi_1, \varphi_2, \dots, \varphi_n$ establishes that

$$\Box\left(\bigvee_{i=1}^n \varphi_i\right)$$

is P-valid.