Verification

Lecture 26

Bernd Finkbeiner Peter Faymonville Michael Gerke

Coming up next week...

End-of-term exam will take place on Feb 9, 2pm-5pm, in HS 002 **Open Book**

Final problem set will be discussed in lecture on Tuesday.

REVIEW: Proving Invariance

• for $\tau \in \mathcal{T}$ in P

 $\{\varphi\}\tau\{\psi\}: \quad \rho_{\tau} \land \varphi \to \psi'$ "\tau leads from \varphi to \psi in P"

• for \mathcal{T} in P $\{\varphi\}\mathcal{T}\{\psi\}: \{\varphi\}\tau\{\psi\}$ for every $\tau \in \mathcal{T}$ " \mathcal{T} leads from φ to ψ in P"

Completeness of Rule INV

For every assertion q such that $\Box q$ is P-valid there exists an assertion φ such that I1 – I3 are provable from state validities

Note: We actually show *completeness relative to first-order reasoning* taking all state-valid assertions as axioms.

Proof Outline

Given FTS P with system variables

 $\overline{y} = (y_1, \ldots, y_m)$

- Assume
 q is P-valid, i.e.,
 (†) q holds over every P-accessible state
- Construct (to be shown) <u>accessibility assertion</u> *acc*_P(ȳ) such that for any state s, (*) s is P-accessible state iff s ⊫ acc_P
- Take $\varphi = acc_P$

We have to show :

- 1. acc_P satisfies I1 I3
- 2. acc_P can be constructed

Proof

- 1. acc_P satisfies I1 I3
 - Premise I1: $\underbrace{acc_P}{\varphi} \rightarrow q$ $s \models acc_P \qquad \stackrel{(*)}{\Rightarrow} s \text{ is } P\text{-accessible state}$ $\underbrace{(\ddagger)}{\Rightarrow} s \models q$

Thus

- Premise I2: $\Theta \rightarrow \underbrace{acc_P}_{P}$
 - $s \models \Theta \quad \Rightarrow \quad s \text{ is } P \text{-accessible}$

$$\stackrel{(*)}{\Rightarrow} \quad s \Vdash \underbrace{acc_P}{\varphi}$$

Thus

$$\Theta \rightarrow \underbrace{acc_P}_{\varphi}$$
 is state-valid

• Premise I3: for every $au \in \mathcal{T}$,

$$ho_{ au} \wedge acc_P \rightarrow acc'_P$$

where $acc'_P = acc_P(\overline{y}')$.

Take s' to be a \overline{y} -variant of s (s agrees with s' on all variables other than \overline{y}) and for each y_i take

$$s'[y_i] = s[y'_i]$$
Then
$$s \models \rho_{\tau} \Rightarrow s' \text{ is a } \tau \text{-successor of } s$$

$$s \models acc_p \stackrel{(*)}{\Rightarrow} s \text{ is } P \text{-accessible}$$

$$\Rightarrow s' \text{ is } P \text{-accessible}$$

$$\Rightarrow s' \models acc_p$$

$$\Rightarrow s \models acc'_p$$

2. Construction of acc_P

Assume assertion language includes dynamic array \underline{a} over DArray \underline{a} is viewed as function, $a: [1..n] \mapsto D$ where n is the size of the array

> Assumption is not essential. E.g., use encoding

$$(n_1,\ldots,n_k) \quad \to \quad n=p_1^{n_1}\cdots p_k^{n_k}$$

where p_i is the *i*th prime number

Case: single-variable y

Define

 $acc_P(y)$: $(\exists n > 0)$ $(\exists a \in [1..n] \mapsto D)$. $init \land last \land evolve$

where

init: $\Theta(a[1])$ *last*: a[n] = y*evolve*: $\forall i . 1 \le i < n . \bigvee_{\tau \in \mathcal{T}} \rho_{\tau}(a[i], a[i+1])$

array a represents a prefix

 s_1, \ldots, s_n

of a computation where a[i] stands for

the value of y at state s_i

Claim:For any value $d \in D$, $acc_P(d) = T$ iffd is a possible value of y in a P-accessible state

٠

•

٠

<u>Multivariable</u> $\overline{y} = (y_1, \ldots, y_m)$ <u>case</u>

•

٠

•

Use 2-dimensional array a

Example

V: $\{y\}$ ranges over \mathbb{Z} (the integers) Θ : y = 0 ρ_{τ} : y' = y + 2

 $acc_{P}: \qquad (\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z}).$ $\begin{pmatrix} a[1] = 0 \land a[n] = y \land \\ \forall i.1 \le i < n.a[i+1] = a[i] + 2 \end{pmatrix}$ simplifies to $(\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z}).$ $\begin{pmatrix} a[n] = y \land \\ \forall i.1 \le i \le n.a[i] = 2 \cdot (i-1) \end{pmatrix}$

simplifies to

 $y \geq 0 \land even(y)$

Discussion

Although the assertion acc_P is inductive and strengthens any *P*-invariant, it is not very useful in practice.

Induction-based Model Checking

IC3

- incremental construction of
- inductive clauses for
- indubitable correctness

Goal: decide whether an assertion *P* is *S*-invariant for some transition system *S*.

Core data structure:

Sequence of formulas $F_0 = \Theta, F_1, F_2, \dots, F_k$ that are overapproximations of the sets of states reachable in at most $1, \dots, k$ steps.

Approach: Refine sequence such that if P is S-invariant, some F_i will eventually become inductive.

IC3 Invariants

- $\Theta \Rightarrow F_0$
- $F_i \Rightarrow F_{i+1}$ for all $0 \le i < k$
- $F_i \Rightarrow P$ for all $0 \le i \le k$
- $F_i \land \rho \Rightarrow F'_{i+1}$ for all $0 \le i < k$

Initially, k = 1 and $F_0 = \Theta$, $F_1 = P$.

IC3 invariants initially established by checking for counterexamples of length 0 and 1.

k is increased whenever it is proven that there are no counterexamples of length *k*.

Main Algorithm

```
if (\Theta \Rightarrow P \text{ or } \Theta \land \rho \Rightarrow P') return \bot;
F_0 := \Theta; F_1 := P; k := 1;
repeat {
        while (there are CTIs in F_k) {
               refine F_1, \ldots, F_k
               if (counterexample found) return \perp
       };
       k + +;
       F_k := P;
       propagate clauses
       if (F_i = F_{i+1} \text{ for some } 0 \le i < k) return \top
}
```

Counterexample-to-induction (CTI)

A counterexample to induction (CTI) is a state s that is

- reachable in k steps and
- that has an outgoing transition to a $\neg P$ state.

To find a CTI, check whether

 $F_k \wedge \rho \Rightarrow P$

holds.

Refine F_0, \ldots, F_k (part 1)

- Suppose a CTI s exists
- If *P* is an invariant, then $\neg s$ is inductive relative to (at least) F_0 . We say *G* is inductive relative to *H* iff (1) $\Theta \Rightarrow G$ and (2) $H \land G \land \rho \Rightarrow G'$. If $\neg s$ is not even inductive relative to F_0 then *P* is not an

invariant (\rightarrow counterexample).

- Pick the greatest *i* such that $\neg s$ is inductive relative to F_i .
- Exclude $\neg s$ from F_{i+1} . In principle, this could be done by setting F_{i+1} to $F_{i+1} \land \neg s$. Better: generalize $\neg s$ by dropping literals such that the subclause is still inductive relative to F_i

Propagate clauses

For any clause c of F_i

- such that $F_i \wedge c \Rightarrow c'$,
- we add *c* to *F*_{i+1},
 i.e., *F*_{i+1} := *F*_{i+1} ∧ *c*.

- Previously: We excluded (the generalization of) $\neg s$ from F_{i+1} .
- This does not necessarily rule out the CTI *s*, if i < k 1.
- In this case: Find predecessor *t* in $F_{i+1} \\ \\ \\ F_i$
- Recur on *t*: eliminate *t* in F_{i+1}