Verification

Lecture 24

Bernd Finkbeiner Peter Faymonville Michael Gerke

Combining Decision Procedures

Given

Theories T_{i} over signatures Σ_{i} (constants, functions, predicates) with corresponding decision procedures P_{i} for T_{i}-satisfiability.

Goal
Decide satisfiability of a sentence in theory $\cup_{i} T_{i}$.
Example: How do we show that

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable?

Combining Decision Procedures

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability

Problem:

Decision procedures are domain specific. How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

Σ_{1}-theory T_{1}
stably infinite

$$
\begin{aligned}
& \Sigma_{2} \text {-theory } T_{2} \\
& \text { stably infinite }
\end{aligned}
$$

P_{1} for T_{1}-satisfiability of quantifier-free Σ_{1}-formulae

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability
of quantifier-free $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formulae

Nelson-Oppen: Limitations

Given formula F in theory $T_{1} \cup T_{2}$.

1. F must be quantifier-free.
2. Signatures Σ_{i} of the combined theory only share $=$, i.e.,

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_{i}--- combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula --- otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

A Σ-theory T is stably infinite iff
for every quantifier-free Σ-formula F :
if F is T-satisfiable then there exists some T-interpretation that satisfies F and that has a domain of infinite cardinality.

Example: Σ-theory T

$$
\Sigma:\{a, b,=\}
$$

Axiom

$$
\forall x . x=a \vee x=b
$$

For every T-interpretation $I,\left|D_{l}\right| \leq 2$ (at most two elements). Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders
Σ-theory $T_{\text {s }}$

$$
\Sigma_{\leq}:\{\leq,=\}
$$

where \leq is a binary predicate.
Axioms

1. $\forall x, x \leq x$
2. $\forall x, y \cdot x \leq y \wedge y \leq x \rightarrow x=y$
3. $\forall x, y, z . x \leq y \wedge y \leq z \rightarrow x \leq z$
(\leq reflexivity)
(\leq antisymmetry)
(\leq transitivity)

We prove T_{\leq}is stably infinite.
Consider T_{\leq}-satisfiable quantifier-free Σ_{\leq}-formula F.
Consider arbitrary satisfying T_{\leq}-interpretation $/:\left(D_{l}, \alpha_{l}\right)$, where α_{l} maps \leq to \leq.

- Let A be any infinite set disjoint from D_{l}
- Construct new interpretation J : $\left(D_{\jmath}, \alpha_{\jmath}\right)$
- $D_{J}=D_{1} \cup A$
- $\alpha_{\jmath}=\{\leq \mapsto \leq \jmath\}$, where for $a, b \in D_{\jmath}$,

$$
a \leq, b \stackrel{\text { def }}{=} \begin{cases}a \leq 1 b & \text { if } a, b \in D_{1} \\ a=b & \text { otherwise }\end{cases}
$$

J is T_{\leq}-interpretation satisfying F with infinite domain. Hence, T_{\leq}is stably infinite.

Example: Consider quantifier-free conjunctive $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2) .
$$

The signatures of T_{E} and $T_{\mathbb{Z}}$ only share $=$. Also, both theories are stably infinite. Hence, the N-O combination of the decision procedures for T_{E} and $T_{\mathbb{Z}}$ decides the ($\left.T_{E} \cup T_{\mathbb{Z}}\right)$-satisfiability of F.

Intuitively, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.
For the first two literals imply $x=1 \vee x=2$ so that $f(x)=f(1) \vee f(x)=f(2)$.
Contradict last two literals. Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

N-O Overview

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_{1} \cup T_{2}$.
- Convert to conjunction $\Gamma_{1} \cup \Gamma_{2}$ s.t.
- Γ_{i} in theory T_{i}
- $\Gamma_{1} \cup \Gamma_{2}$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ_{1} and Γ_{2} $\operatorname{shared}\left(\Gamma_{1}, \Gamma_{2}\right)=$ free $\left(\Gamma_{1}\right) \cap$ free $\left(\Gamma_{2}\right)$
s.t. $S \cup \Gamma_{i}$ are T_{i}-satisfiable for all i, then Γ is satisfiable.
- Otherwise, unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Two versions:

- nondeterministic --- simple to present, but high complexity
- deterministic --- efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
--- same for both versions
- Phase 2 nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F. Transform F into two quantifier-free conjunctive formulae Σ_{1}-formula $F_{1} \quad$ and $\quad \Sigma_{2}$-formula F_{2}
s.t. F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable F_{1} and F_{2} are linked via a set of shared variables.

For term t, let $\mathrm{hd}(t)$ be the root symbol, e.g. $\mathrm{hd}(f(x))=f$.

Generation of F_{1} and F_{2}

For $i, j \in\{1,2\}$ and $i \neq j$, repeat the transformations
(1) if function $f \in \Sigma_{i}$ and $\mathrm{hd}(t) \in \Sigma_{j}$,

$$
F\left[f\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \Rightarrow F\left[f\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(2) if predicate $p \in \Sigma_{i}$ and $\mathrm{hd}(t) \in \Sigma_{j}$,

$$
F\left[p\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \Rightarrow F\left[p\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(3) if $\operatorname{hd}(s) \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F[s=t] \quad \Rightarrow \quad F[T] \wedge w=s \wedge w=t
$$

(4) if $\operatorname{hd}(s) \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F[s \neq t] \quad \Rightarrow \quad F\left[w_{1} \neq w_{2}\right] \wedge w_{1}=s \wedge w_{2}=t
$$

where w, w_{1}, and w_{2} are fresh variables.

Phase 2: Guess and Check

- Phase 1 separated $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F into two formulae:
Σ_{1}-formula F_{1} and Σ_{2}-formula F_{2}
- F_{1} and F_{2} are linked by a set of shared variables:

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\text { free }\left(F_{1}\right) \cap \text { free }\left(F_{2}\right)
$$

- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$
\alpha(V, E): \bigwedge_{u, v \in V \cdot u E v} u=v \wedge \bigwedge_{u, v \in V . \neg(u E V)} u \neq v
$$

Then,
the original formula F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E of V s.t.
(1) $F_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable, and
(2) $F_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable.

Otherwise, F is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check":
First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the \# of shared variables. It is given by Bell numbers. e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version
Phase 1 as before
Phase 2 asks the decision procedures P_{1} and P_{2} to propagate new equalities.

Convex Theories

Equality propagation is a decision procedure for convex theories.
Def. A Σ-theory T is convex iff for every quantifier-free conjunction Σ-formula F and for every disjunction $\bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)$

$$
\begin{aligned}
& \text { if } F \vDash \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right) \\
& \text { then } F \vDash u_{i}=v_{i}, \text { for some } i \in\{1, \ldots, n\}
\end{aligned}
$$

Convex Theories

- $T_{E}, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text {cons }}$ are convex
- $T_{\mathbb{Z}}, T_{\mathrm{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex
Consider quantifier-free conjunction

$$
F: \quad 1 \leq z \wedge z \leq 2 \wedge u=1 \wedge v=2
$$

Then

$$
F \vDash z=u \vee z=v
$$

but

$$
\begin{aligned}
& F \not \neq z=u \\
& F \not \approx z=v
\end{aligned}
$$

Example:

The theory of arrays T_{A} is not convex.
Consider the quantifier-free conjunctive Σ_{A}-formula

$$
F: a\langle i \triangleleft v\rangle[j]=v .
$$

Then

$$
F \Rightarrow i=j \vee a[j]=v,
$$

but

$$
\begin{aligned}
& F \nRightarrow i=j \\
& F \nRightarrow a[j]=v .
\end{aligned}
$$

What if T is Not Convex?

Case split when:

$$
\Gamma \vDash \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)
$$

but

$$
\Gamma \not \not \neq u_{i}=v_{i} \quad \text { for all } i=1, \ldots, n
$$

- For each $i=1, \ldots, n$, construct a branch on which $u_{i}=v_{i}$ is assumed.
- If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable.

Invariant Generation

Invariant Generation

Discover inductive assertions of programs

- General procedure
- Concrete analysis
- interval analysis invariants of form

$$
c \leq v \text { or } v \leq c
$$

for program variable v and constant c

- Karr's analysis invariants of form

$$
c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0
$$

for program variables x_{i} and constants c_{i}

Other invariant generation algorithms in literature:

- linear inequalities

$$
c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} \leq 0
$$

- polynomial equalities and inequalities

Weakest Precondition

For FOL formula F and program statement S, the weakest precondition $\mathrm{wp}(F, S)$ is a FOL formula s.t. if for state s

$$
s \vDash \mathrm{wp}(F, S)
$$

and if statement S is executed on state s to produce state s^{\prime}, then

$$
s^{\prime} \vDash F .
$$

In other words, the weakest precondition moves a formula backwards over a series of statements: for F to hold after executing $S_{1} ; \ldots ; S_{n}$, $\operatorname{wp}\left(F, S_{1} ; \ldots ; S_{n}\right)$ must hold before executing the statements.

For assume and assignment statements

- $\operatorname{wp}(F$, assume $c) \Leftrightarrow c \rightarrow F$, and
- $\operatorname{wp}(F[v], v:=e) \Leftrightarrow F[e] ;$
and on sequences of statements $S_{1} ; \ldots ; S_{n}$:

$$
\operatorname{wp}\left(F, S_{1} ; \ldots ; S_{n}\right) \Leftrightarrow \operatorname{wp}\left(\operatorname{wp}\left(F, S_{n}\right), S_{1} ; \ldots ; S_{n-1}\right)
$$

Strongest Postcondition

For FOL formula F and program statement S, the strongest postcondition $\mathrm{sp}(F, S)$ is a FOL formula s.t.
if s is the current state and

$$
s \vDash \operatorname{sp}(F, S)
$$

then statement S was executed from a state s_{0} s.t.

$$
s_{0} \vDash F
$$

- On assume statements,

$$
\operatorname{sp}(F, \text { assume } c) \Leftrightarrow c \wedge F,
$$

for if program control makes it past the statement, then c must hold.

- Unlike in the case of wp, there is no simple definition of sp on assignments:

$$
\operatorname{sp}(F[v], v:=e[v]) \Leftrightarrow \exists v^{0} . v=e\left[v^{0}\right] \wedge F\left[v^{0}\right] .
$$

- On a sequence of statements $S_{1} ; \ldots ; S_{n}$:

$$
\operatorname{sp}\left(F, S_{1} ; \ldots ; S_{n}\right) \Leftrightarrow \operatorname{sp}\left(\operatorname{sp}\left(F, S_{1}\right), S_{2} ; \ldots ; S_{n}\right)
$$

Example: Compute

$$
\begin{aligned}
\operatorname{sp}(i \geq n & , i:=i+k) \\
& \Leftrightarrow \exists i^{0} . i=i^{0}+k \wedge i^{0} \geq n \\
& \Leftrightarrow i-k \geq n
\end{aligned}
$$

since $i^{0}=i-k$.
Example: Compute

$$
\begin{aligned}
\operatorname{sp}(i \geq n & , \text { assume } k \geq 0 ; i:=i+k) \\
& \Leftrightarrow \operatorname{sp}(\operatorname{sp}(i \geq n, \text { assume } k \geq 0), i:=i+k) \\
& \Leftrightarrow \operatorname{sp}(k \geq 0 \wedge i \geq n, i:=i+k) \\
& \Leftrightarrow \exists i^{0} . i=i^{0}+k \wedge k \geq 0 \wedge i^{0} \geq n \\
& \Leftrightarrow k \geq 0 \wedge i-k \geq n
\end{aligned}
$$

Verification Condition

VCs in terms of wp:

$$
\{F\} S_{1} ; \ldots ; S_{n}\{G\}: F \Rightarrow \operatorname{wp}\left(G, S_{1} ; \ldots ; S_{n}\right)
$$

VCs in terms of sp :

$$
\{F\} S_{1} ; \ldots ; S_{n}\{G\}: \operatorname{sp}\left(F, S_{1} ; \ldots ; S_{n}\right) \Rightarrow G .
$$

Static Analysis: basic definition

- Program P with locations $\mathcal{L}\left(L_{0}\right.$--- initial location)
- Cutset of \mathcal{L} each path from one cutpoint (location in the cutset) to the next cutpoint is basic path (does not cross loops)
- Assertion map

$$
\mu: \mathcal{L} \rightarrow \mathrm{FOL}
$$

(map from \mathcal{L} to first-order assertions).
It is inductive (inductive map) if for each basic path

$L_{i}: @ \mu\left(L_{i}\right)$
$S_{i} ;$
\vdots
$S_{j} ;$
$L_{j}: @ \mu\left(L_{j}\right)$

for $L_{i}, L_{j} \in \mathcal{L}$, the verification condition

$$
\begin{equation*}
\left\{\mu\left(L_{i}\right)\right\} S_{i} ; \ldots ; S_{j}\left\{\mu\left(L_{j}\right)\right\} \tag{VC}
\end{equation*}
$$

is valid.

Invariant Generation

Find inductive assertion maps μ s.t. the $\mu\left(L_{i}\right)$ satisfies (VC) for all basic paths.

Method: Symbolic execution (forward propagation)

- Initial map μ_{0} :

$$
\begin{array}{ll}
\mu\left(L_{0}\right):=F_{\text {pre }}, & \text { and } \\
\mu(L):=\perp & \text { for } L \in \mathcal{L} \backslash\left\{L_{0}\right\} .
\end{array}
$$

- Maintain set $S \subseteq \mathcal{L}$ of locations that still need processing. Initially, let $S=\left\{L_{0}\right\}$. Terminate when $S=\varnothing$.
- Iteration i : We have so far constructed μ_{i}. Choose some $L_{j} \in S$ to process and remove it from S.

For each basic path (starting at L_{j})

$L_{j}: @ \mu\left(L_{j}\right)$	$(\cdot) \longrightarrow$
$S_{j} ;$	
\vdots	
$S_{k} ;$	
$L_{k}: @ \mu\left(L_{k}\right)$	

compute and set

$$
\mu\left(L_{k}\right) \Leftrightarrow \mu\left(L_{k}\right) \vee \operatorname{sp}\left(\mu\left(L_{j}\right), S_{j} ; \ldots ; S_{k}\right)
$$

If

$$
\operatorname{sp}\left(\mu\left(L_{j}\right), S_{j} ; \ldots ; S_{k}\right) \Rightarrow \mu_{i}\left(L_{k}\right)
$$

that is, if $s p$ does not represent new states not already represented in $\mu_{i}\left(L_{k}\right)$, then $\mu_{i+1}\left(L_{k}\right) \Leftrightarrow \mu_{i}\left(L_{k}\right)$ (nothing new is learned)
Otherwise add L_{k} to S.
For all other locations $L_{\ell} \in \mathcal{L}, \mu_{i+1}\left(L_{\ell}\right) \Leftrightarrow \mu_{i}\left(L_{\ell}\right)$
When $S=\varnothing$ (say iteration i^{*}), then $\mu_{i^{*}}$ is an inductive map.

The algorithm
let ForwardPropagate $F_{\text {pre }} \mathcal{L}=$
$S:=\left\{L_{0}\right\} ;$
$\mu\left(L_{0}\right):=F_{\text {pre }}$;
$\mu(L):=\perp$ for $L \in \mathcal{L} \backslash\left\{L_{0}\right\} ;$
while $S \neq \varnothing$ do
let $L_{j}=$ choose S in
$S:=S \backslash\left\{L_{j}\right\}$;
foreach $L_{k} \in \operatorname{succ}\left(L_{j}\right)$ do $\left[\begin{array}{l}L_{k} \in \operatorname{succ}\left(L_{j}\right) \text { is a successor of } L_{j} \\ \text { if there is a basic path from } L_{j} \text { to } L_{k}\end{array}\right]$
let $F=\operatorname{sp}\left(\mu\left(L_{j}\right), S_{j} ; \ldots ; S_{k}\right)$ in
if $F \nRightarrow \mu\left(L_{k}\right)$
then $\mu\left(L_{k}\right):=\mu\left(L_{k}\right) \vee F$;
$S:=S \cup\left\{L_{k}\right\} ;$
done;
done;
μ

Problem: algorithm may not terminate
Example: Consider loop with integer variables i and n :

```
@LO}:i=0\wedgen\geq0
while
        @L
        (i<n) {
        i:=i+1;
    }
```

There are two basic paths:

$$
\begin{aligned}
& @ L_{0}: i=0 \wedge n \geq 0 ; \\
& @ L_{1}: ? ;
\end{aligned}
$$

and
@L L_{1} ?;
assume $i<n$;
$i:=i+1$;
@L L_{1} ? ;

- Initially,

$$
\begin{aligned}
& \mu\left(L_{0}\right) \quad \Leftrightarrow \quad i=0 \wedge n \geq 0 \\
& \mu\left(L_{1}\right) \quad \Leftrightarrow \quad \perp
\end{aligned}
$$

- Following path (1) results in setting

$$
\mu\left(L_{1}\right):=\mu\left(L_{1}\right) \vee(i=0 \wedge n \geq 0)
$$

$\mu\left(L_{1}\right)$ was \perp, so that it becomes

$$
\mu\left(L_{1}\right) \Leftrightarrow i=0 \wedge n \geq 0
$$

- On the next iteration, following path (2) yields

$$
\mu\left(L_{1}\right):=\mu\left(L_{1}\right) \vee \operatorname{sp}\left(\mu\left(L_{1}\right), \text { assume } i<n ; i:=i+1\right)
$$

Currently $\mu\left(L_{1}\right) \Leftrightarrow i=0 \wedge n \geq 0$, so

$$
\begin{aligned}
F: \operatorname{sp}(i & =0 \wedge n \geq 0, \text { assume } i<n ; i:=i+1) \\
& \Leftrightarrow \operatorname{sp}(i<n \wedge i=0 \wedge n \geq 0, i:=i+1) \\
& \Leftrightarrow \exists i^{0} . i=i^{0}+1 \wedge i^{0}<n \wedge i^{0}=0 \wedge n \geq 0 \\
& \Leftrightarrow i=1 \wedge n>0
\end{aligned}
$$

Since the implication

$$
\underbrace{i=1 \wedge n>0}_{F} \Rightarrow \underbrace{i=0 \wedge n \geq 0}_{\mu\left(L_{1}\right)}
$$

is invalid,

$$
\mu\left(L_{1}\right) \Leftrightarrow \underbrace{(i=0 \wedge n \geq 0)}_{\mu\left(L_{1}\right)} \vee \underbrace{(i=1 \wedge n>0)}_{F}
$$

at the end of the iteration.

- At the end of the next iteration,

$$
\mu\left(L_{1}\right) \Leftrightarrow \underbrace{(i=0 \wedge n \geq 0) \vee(i=1 \wedge n>0)}_{\mu\left(L_{1}\right)}
$$

- At the end of the k th iteration,

$$
\mu\left(L_{1}\right) \Leftrightarrow \begin{aligned}
& (i=0 \wedge n \geq 0) \vee(i=1 \wedge n \geq 1) \\
& \vee \cdots \vee(i=k \wedge n \geq k)
\end{aligned}
$$

It is never the case that the implication

$$
\begin{gathered}
i=k \wedge n \geq k \\
\Downarrow \\
(i=0 \wedge n \geq 0) \vee(i=1 \wedge n \geq 1) \vee \cdots \vee(i=k-1 \wedge n \geq k-1)
\end{gathered}
$$

is valid, so the main loop of while never finishes.

- However, it is obvious that

$$
0 \leq i \leq n
$$

is an inductive annotation of the loop.

Solution: Abstraction
A state s is reachable for program P if it appears in some computation of P.

The problem is that ForwardPropagate computes the exact set of reachable states.

Inductive annotations usually over-approximate the set of reachable states: every reachable state s satisfies the annotation, but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.

