Verification

Lecture 24

Bernd Finkbeiner Peter Faymonville Michael Gerke

Combining Decision Procedures

Given

Theories T_i over signatures Σ_i (constants, functions, predicates) with corresponding decision procedures P_i for T_i -satisfiability.

Goal

Decide satisfiability of a sentence in theory $\bigcup_i T_i$.

Example: How do we show that

 $F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$

is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable?

Combining Decision Procedures

Problem:

Decision procedures are domain specific. How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

 Σ_1 -theory T_1 stably infinite

 Σ_2 -theory T_2 stably infinite

 P_1 for T_1 -satisfiability of quantifier-free Σ_1 -formulae

 P_2 for T_2 -satisfiability of quantifier-free Σ_2 -formulae

P for $(T_1 \cup T_2)$ -satisfiability of quantifier-free $(\Sigma_1 \cup \Sigma_2)$ -formulae

Nelson-Oppen: Limitations

Given formula *F* in theory $T_1 \cup T_2$.

- 1. F must be quantifier-free.
- 2. Signatures Σ_i of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_i --- combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula --- otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

A Σ -theory T is <u>stably infinite</u> iff for every quantifier-free Σ -formula F: if F is T-satisfiable then there exists some T-interpretation that satisfies Fand that has a domain of infinite cardinality.

Example: Σ -theory T

$$\Sigma: \{a, b, =\}$$

Axiom

 $\forall x. x = a \lor x = b$

For every *T*-interpretation *I*, $|D_I| \le 2$ (at most two elements). Hence, *T* is not stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders Σ -theory T_{\leq}

$$\Sigma_{\leq}$$
: { \leq , =}

where ${\scriptstyle \leq}$ is a binary predicate.

Axioms

1. $\forall x. x \le x$ (\le reflexivity)2. $\forall x, y. x \le y \land y \le x \rightarrow x = y$ (\le antisymmetry)3. $\forall x, y, z. x \le y \land y \le z \rightarrow x \le z$ (\le transitivity)

We prove T_{\leq} is stably infinite.

Consider T_{\leq} -satisfiable quantifier-free Σ_{\leq} -formula F. Consider arbitrary satisfying T_{\leq} -interpretation $I : (D_I, \alpha_I)$, where α_I maps \leq to \leq_I .

- Let A be any infinite set disjoint from D_l
- Construct new interpretation $J: (D_J, \alpha_J)$

D_J = D_I ∪ A
α_J = {≤ ↦ ≤_J}, where for a, b ∈ D_J,
$$a ≤J b \stackrel{\text{def}}{=} \begin{cases} a ≤I b & \text{if } a, b ∈ D_I \\ a = b & \text{otherwise} \end{cases}$$

J is T_{\leq} -interpretation satisfying *F* with infinite domain. Hence, T_{\leq} is stably infinite. Example: Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_Z)$ -formula

$$F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the N-O combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

Intuitively, *F* is $(T_E \cup T_Z)$ -unsatisfiable. For the first two literals imply $x = 1 \lor x = 2$ so that $f(x) = f(1) \lor f(x) = f(2)$. Contradict last two literals. Hence, *F* is $(T_E \cup T_Z)$ -unsatisfiable.

N-O Overview

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_1 \cup T_2$.
- Convert to conjunction $\Gamma_1 \cup \Gamma_2$ s.t.
 - Γ_i in theory T_i
 - $\Gamma_1 \cup \Gamma_2$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ₁ and Γ₂ shared(Γ₁, Γ₂) = free(Γ₁) ∩ free(Γ₂) s.t. S ∪ Γ_i are T_i-satisfiable for all *i*, then Γ is **satisfiable**.
- Otherwise, **unsatisfiable**.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula *F*. Two versions:

- nondeterministic --- simple to present, but high complexity
- deterministic --- efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
 - --- same for both versions
- Phase 2

nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Transform F into two quantifier-free conjunctive formulae Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable

 F_1 and F_2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Generation of F_1 and F_2

For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations (1) if function $f \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[f(t_1,\ldots,t,\ldots,t_n)] \quad \Rightarrow \quad F[f(t_1,\ldots,w,\ldots,t_n)] \land w = t$ (2) if predicate $p \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[p(t_1,\ldots,t,\ldots,t_n)] \Rightarrow F[p(t_1,\ldots,w,\ldots,t_n)] \land w = t$ (3) if $hd(s) \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[s=t] \implies F[\top] \land w = s \land w = t$ (4) if $hd(s) \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[s \neq t] \implies F[w_1 \neq w_2] \land w_1 = s \land w_2 = t$

where w, w_1 , and w_2 are fresh variables.

Phase 2: Guess and Check

- Phase 1 separated $(\Sigma_1 \cup \Sigma_2)$ -formula *F* into two formulae: Σ_1 -formula F_1 and Σ_2 -formula F_2
- ► F_1 and F_2 are linked by a set of shared variables: $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$
- Let *E* be an equivalence relation over *V*.
- ► The arrangement $\alpha(V, E)$ of V induced by E is: $\alpha(V, E) : \bigwedge_{u, v \in V.} u = v \land \bigwedge_{u, v \in V. \neg(uEv)} u \neq v$

Then,

the original formula *F* is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation *E* of *V* s.t.

(1) $F_1 \land \alpha(V, E)$ is T_1 -satisfiable, and (2) $F_2 \land \alpha(V, E)$ is T_2 -satisfiable. Otherwise, F is $(T_1 \cup T_2)$ -unsatisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check": First, guess an equivalence relation *E*, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by Bell numbers. e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version Phase 1 as before Phase 2 asks the decision procedures P_1 and P_2 to propagate new equalities.

Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Σ -theory T is <u>convex</u> iff for every quantifier-free conjunction Σ -formula Fand for every disjunction $\bigvee_{i=1}^{n} (u_i = v_i)$ if $F \models \bigvee_{i=1}^{n} (u_i = v_i)$ then $F \models u_i = v_i$, for some $i \in \{1, ..., n\}$

Convex Theories

- $T_E, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text{cons}}$ are convex
- $T_{\mathbb{Z}}, T_{\mathsf{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex Consider quantifier-free conjunction

 $F: \quad 1 \leq z \ \land \ z \leq 2 \ \land \ u = 1 \ \land \ v = 2$

Then

 $F \models z = u \lor z = v$

but

$$F \neq z = u$$
$$F \neq z = v$$

Example:

The theory of arrays T_A is not convex. Consider the quantifier-free conjunctive Σ_A -formula

$$F: a\langle i \triangleleft v \rangle [j] = v$$
.

Then

$$F \Rightarrow i = j \lor a[j] = v$$
,

but

$$F \Rightarrow i = j$$

 $F \Rightarrow a[j] = v$.

What if T is Not Convex?

Case split when:

$$\Gamma \vDash \bigvee_{i=1}^{n} (u_i = v_i)$$

but

$$\Gamma \neq u_i = v_i$$
 for all $i = 1, ..., n$

- For each i = 1, ..., n, construct a branch on which $u_i = v_i$ is assumed.
- If all branches are contradictory, then unsatisfiable.
 Otherwise, satisfiable.

Invariant Generation

Invariant Generation

Discover inductive assertions of programs

- General procedure
- Concrete analysis
 - interval analysis

invariants of form

 $c \le v$ or $v \le c$ for program variable v and constant c

Karr's analysis

invariants of form

 $c_0 + c_1 x_1 + \dots + c_n x_n = 0$

for program variables x_i and constants c_i

Other invariant generation algorithms in literature:

linear inequalities

 $c_0 + c_1 x_1 + \dots + c_n x_n \leq 0$

polynomial equalities and inequalities

Weakest Precondition

For FOL formula F and program statement S, the weakest precondition wp(F, S) is a FOL formula s.t. if for state s

 $s \models wp(F, S)$

and if statement S is executed on state s to produce state s', then

 $s' \models F$.

In other words, the weakest precondition moves a formula backwards over a series of statements: for *F* to hold after executing $S_1; ...; S_n$, wp(*F*, $S_1; ...; S_n$) must hold before executing the statements.

For assume and assignment statements

- wp(F, assume c) $\Leftrightarrow c \rightarrow F$, and
- wp($F[v], v \coloneqq e$) \Leftrightarrow F[e];

and on sequences of statements S_1 ; ...; S_n :

 $wp(F, S_1; \ldots; S_n) \Leftrightarrow wp(wp(F, S_n), S_1; \ldots; S_{n-1}).$

Strongest Postcondition

For FOL formula F and program statement S, the strongest postcondition sp(F, S) is a FOL formula s.t. if s is the current state and

 $s \models sp(F, S)$

then statement S was executed from a state s_0 s.t.

 $s_0 \models F$.

On assume statements,

$$sp(F, assume c) \Leftrightarrow c \land F,$$

for if program control makes it past the statement, then *c* must hold.

Unlike in the case of wp, there is no simple definition of sp on assignments:

$$\operatorname{sp}(F[v], v := e[v]) \Leftrightarrow \exists v^0. v = e[v^0] \land F[v^0].$$

• On a sequence of statements S_1 ; ...; S_n :

$$\operatorname{sp}(F, S_1; \ldots; S_n) \Leftrightarrow \operatorname{sp}(\operatorname{sp}(F, S_1), S_2; \ldots; S_n).$$

Example: Compute

$$sp(i \ge n, i := i + k)$$

$$\Leftrightarrow \exists i^0, i = i^0 + k \land i^0 \ge n$$

$$\Leftrightarrow i - k \ge n$$

since $i^0 = i - k$.

Example: Compute

$$sp(i \ge n, \text{ assume } k \ge 0; i := i + k)$$

$$\Leftrightarrow sp(sp(i \ge n, \text{ assume } k \ge 0), i := i + k)$$

$$\Leftrightarrow sp(k \ge 0 \land i \ge n, i := i + k)$$

$$\Leftrightarrow \exists i^{0} \cdot i = i^{0} + k \land k \ge 0 \land i^{0} \ge n$$

$$\Leftrightarrow k \ge 0 \land i - k \ge n$$

Verification Condition

VCs in terms of wp:

$$\{F\}S_1;\ldots;S_n\{G\}:F \Rightarrow wp(G, S_1;\ldots;S_n).$$

VCs in terms of sp:

$$\{F\}S_1;\ldots;S_n\{G\}: \operatorname{sp}(F, S_1;\ldots;S_n) \Rightarrow G.$$

Static Analysis: basic definition

- Program *P* with locations \mathcal{L} (L_0 --- initial location)
- Cutset of $\mathcal L$

each path from one cutpoint (location in the cutset) to the next cutpoint is basic path (does not cross loops)

Assertion map

 $\mu:\,\mathcal{L}\to\mathsf{FOL}$

(map from \mathcal{L} to first-order assertions).

It is inductive (inductive map) if for each basic path

$$L_i: @ \mu(L_i)$$

$$S_i;$$

$$S_j;$$

$$L_j: @ \mu(L_j)$$

$$(.)$$

for $L_i, L_j \in \mathcal{L}$, the verification condition $\{\mu(L_i)\}S_i; \ldots; S_j\{\mu(L_j)\}$ is valid.

(VC)

Invariant Generation

Find inductive assertion maps μ s.t. the $\mu(L_i)$ satisfies (VC) for all basic paths.

Method: Symbolic execution (forward propagation)

• Initial map μ_0 :

$$\begin{split} \mu(L_0) &\coloneqq F_{\text{pre}} \text{ , } \quad \text{and} \\ \mu(L) &\coloneqq \bot \quad \quad \text{for} \quad L \in \mathcal{L} \smallsetminus \{L_0\}. \end{split}$$

- ▶ Maintain set $S \subseteq \mathcal{L}$ of locations that still need processing. Initially, let $S = \{L_0\}$. Terminate when $S = \emptyset$.
- ► Iteration *i*: We have so far constructed μ_i . Choose some $L_j \in S$ to process and remove it from *S*.

For each basic path (starting at L_i)

 $L_j: @ \mu(L_j)$ $S_j;$ $S_k;$ $L_k: @ \mu(L_k)$

compute and set

$$\mu(L_k) \Leftrightarrow \mu(L_k) \lor \operatorname{sp}(\mu(L_j), S_j; \ldots; S_k)$$

 $\operatorname{sp}(\mu(L_j), S_j; \ldots; S_k) \Rightarrow \mu_i(L_k)$

that is, if *sp* does not represent new states not already represented in $\mu_i(L_k)$, then $\mu_{i+1}(L_k) \Leftrightarrow \mu_i(L_k)$ (nothing new is learned) Otherwise add L_k to *S*. For all other locations $L_\ell \in \mathcal{L}$, $\mu_{i+1}(L_\ell) \Leftrightarrow \mu_i(L_\ell)$

(·)

When $S = \emptyset$ (say iteration i^*), then μ_{i^*} is an inductive map.

The algorithm

```
let ForwardPropagate F_{pre} \mathcal{L} =
    S := \{L_0\};
    \mu(L_0) := F_{\text{pre}};
    \mu(L) := \bot \text{ for } L \in \mathcal{L} \setminus \{L_0\};
    while S \neq \emptyset do
        let L_i = choose S in
        S := S \setminus \{L_j\};
        for each L_k \in \text{succ}(L_j) do \begin{bmatrix} L_k \in \text{succ}(L_j) \text{ is a successor of } L_j \\ \text{ if there is a basic path from } L_i \text{ to } L_k \end{bmatrix}
             let F = sp(\mu(L_i), S_i; \ldots; S_k) in
             if F \neq \mu(L_k)
             then \mu(L_k) := \mu(L_k) \vee F;
                       S := S \cup \{L_{\nu}\}:
```

done;

done;

μ

Problem: algorithm may not terminate

Example: Consider loop with integer variables *i* and *n*:

There are two basic paths:

(1) (1) $(L_{0}: i = 0 \land n \ge 0;$ $(L_{1}: ?;$ and (2) $(L_{1}: ?;$ assume i < n; i := i + 1; $(L_{1}: ?;$

Initially,

$$\begin{array}{ll} \mu(L_0) & \Leftrightarrow & i=0 \ \land \ n \geq 0 \\ \mu(L_1) & \Leftrightarrow & \bot \end{array}$$

Following path (1) results in setting

$$\mu(L_1) := \mu(L_1) \lor (i = 0 \land n \ge 0)$$

 $\mu(L_1)$ was \perp , so that it becomes

$$\mu(L_1) \iff i = 0 \land n \ge 0.$$

On the next iteration, following path (2) yields

$$\mu(L_1) := \mu(L_1) \lor \operatorname{sp}(\mu(L_1), \operatorname{assume} i < n; i := i + 1).$$

Currently $\mu(L_1) \iff i = 0 \land n \ge 0$, so

$$F: \operatorname{sp}(i = 0 \land n \ge 0, \operatorname{assume} i < n; i := i + 1)$$

$$\Leftrightarrow \operatorname{sp}(i < n \land i = 0 \land n \ge 0, i := i + 1)$$

$$\Leftrightarrow \exists i^{0} \cdot i = i^{0} + 1 \land i^{0} < n \land i^{0} = 0 \land n \ge 0$$

$$\Leftrightarrow i = 1 \land n > 0$$

Since the implication

$$\underbrace{i=1 \land n>0}_{F} \Rightarrow \underbrace{i=0 \land n\geq 0}_{\mu(L_1)}$$

is invalid,

$$\mu(L_1) \Leftrightarrow \underbrace{(i=0 \land n \ge 0)}_{\mu(L_1)} \lor \underbrace{(i=1 \land n > 0)}_{F}$$

at the end of the iteration.

At the end of the next iteration,

$$\mu(L_1) \Leftrightarrow \underbrace{\underbrace{(i=0 \land n \ge 0) \lor (i=1 \land n > 0)}_{\mu(L_1)}}_{F}$$

At the end of the kth iteration,

$$\mu(L_1) \iff \frac{(i=0 \land n \ge 0) \lor (i=1 \land n \ge 1)}{\lor \cdots \lor (i=k \land n \ge k)}$$

It is never the case that the implication

$$i = k \land n \ge k$$

$$\downarrow$$

$$(i = 0 \land n \ge 0) \lor (i = 1 \land n \ge 1) \lor \cdots \lor (i = k - 1 \land n \ge k - 1)$$

is valid, so the main loop of while never finishes.

However, it is obvious that

$$0 \le i \le n$$

is an inductive annotation of the loop.

Solution: Abstraction

A state *s* is reachable for program *P* if it appears in some computation of *P*.

The problem is that ForwardPropagate computes the exact set of reachable states.

Inductive annotations usually over-approximate the set of reachable states: every reachable state *s* satisfies the annotation, but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.