Verification

Lecture 23

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

REVIEW: Decidability of first-order theories

Theory	full	QFF	
T_{E}	Equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	integers	yes	yes
$T_{\mathbb{R}}$	reals	yes	yes
$T_{\mathbb{Q}}$	rationals	yes	yes
$T_{\text {cons }}$	lists	no	yes
T_{A}	arrays	no	yes
$T_{\mathrm{A}}^{=}$	arrays with extensionality	no	yes

REVIEW: Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula G that is equivalent to F remains
Note: Could be enough to require that F is equisatisfiable to F^{\prime}, that is F is satisfiable iff F^{\prime} is satisfiable

A theory T admits quantifier elimination if there is an algorithm that given Σ-formula F returns a quantifier-free Σ-formula G that is
T-equivalent to F.

REVIEW: $\widehat{T_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$-formula $\exists x . F[x]$, where F is quantifier-free, construct quantifier-free $\widehat{\Sigma_{\mathbb{Z}}}$-formula that is equivalent to $\exists x . F[x]$.

1. Put $F[x]$ into Negation Normal Form (NNF).
2. Normalize literals: $s<t, k \mid t$, or $\neg(k \mid t)$
3. Put x in $s<t$ on one side: $h x<t$ or $s<h x$
4. Replace $h x$ with x^{\prime} without a factor
5. Replace $F\left[x^{\prime}\right]$ by $\bigvee F[j]$ for finitely many j.

Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms Σ-formulae of form
$\forall x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right]$
Decide if

$$
F\left[x_{1}, \ldots, x_{n}\right] \text { or } \exists x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right] \text { is } T \text {-satisfiable }
$$

$$
\left[\begin{array}{l}
\text { Decide if } \\
\left.\quad F\left[x_{1}, \ldots, x_{n}\right] \text { or } \forall x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right] \text { is } T \text {-valid }\right]
\end{array}\right.
$$

where F is quantifier-free and free $(F)=\left\{x_{1}, \ldots, x_{n}\right\}$
Note: no quantifier alternations
We consider only conjunctive quantifier-free Σ-formulae, i.e., conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).
For given arbitrary quantifier-free Σ-formula F, convert it into DNF Σ-formula

$$
F_{1} \vee \ldots \vee F_{k}
$$

where each F_{i} conjunctive.
F is T-satisfiable iff at least one F_{i} is T-satisfiable.

Preliminary Concepts

Vector

$$
\text { variable } n \text {-vector } n \text {-vector } \bar{a} \in \mathbb{Q}^{n} \quad \text { transpose }
$$

$$
\bar{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \bar{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \quad \bar{a}^{\top}=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]
$$

Matrix

$$
\begin{array}{cc}
\begin{array}{c}
m \times n \text {-matrix } \\
A \in \mathbb{Q}^{m \times n}
\end{array} & \text { transpose }
\end{array} \quad \begin{gathered}
\\
A=\left[\begin{array}{c}
a_{11} \cdots a_{1 n} \\
\vdots \\
a_{m 1} \cdots a_{m n}
\end{array}\right] \quad A^{\top}=\left[\begin{array}{c}
a_{11} \cdots a_{m 1} \\
\vdots \\
a_{1 n} \cdots a_{m n}
\end{array}\right] \quad \text { row }\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{i 1} \cdots a_{i j} \cdots a_{i n} \\
\vdots \\
a_{m j}
\end{array}\right]
\end{gathered}
$$

Multiplication

vector-vector

$$
\bar{a}^{\top} \bar{b}=\left[a_{1} \cdots a_{n}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\sum_{i=1}^{n} a_{i} b_{i}
$$

matrix-vector

$$
A \bar{x}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \vdots & \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} x_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{m i} x_{i}
\end{array}\right]
$$

matrix-matrix

$$
\left[\begin{array}{c}
a_{i k} \\
A
\end{array}\right]\left[\begin{array}{c}
\\
b_{k j} \\
B
\end{array}\right]=\left[\begin{array}{c}
\\
p_{i j} \\
P
\end{array}\right]
$$

where $p_{i j}=\bar{a}_{i} \bar{b}_{j}=\left[\begin{array}{lll}a_{i 1} & \cdots & a_{i n}\end{array}\right]\left[\begin{array}{r}b_{1 j} \\ \vdots \\ b_{n j}\end{array}\right]=\sum_{k=1}^{n} a_{i k} b_{k j}$

Special Vectors and Matrices
$\overline{0}$ - vector (column) of 0 s
$\overline{1}$ - vector of 1 s
Thus $\overline{1}^{\top} \bar{x}=\sum_{i=1}^{n} x_{i}$
$I=\left[\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right]$ identity matrix $(n \times n)$
Thus $I A=A I=A$
unit vector $e_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] i$

Vector Space - set S of vectors closed under addition and scaling of vectors. That is,
if $\bar{v}_{1}, \ldots, \bar{v}_{k} \in S$ then $\lambda_{1} \bar{v}_{1}+\cdots+\lambda_{k} \bar{v}_{k} \in S$ for $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.

Linear Equation

$m \times n$-matrix ${ }_{F: A \bar{x}}^{=\bar{b}} \underbrace{}_{\text {variable } n \text {-vector }}$-vector
represents the $\Sigma_{\mathbb{Q}}$-formula

$$
F:\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}\right) \wedge \cdots \wedge\left(a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}\right)
$$

Gaussian Elimination

Find \bar{x} s.t. $A \bar{x}=\bar{b}$ by elementary row operations

- Swap two rows.
- Multiply a row by a nonzero scalar.
- Add one row to another.

Example:

Solve

$$
\left[\begin{array}{lll}
3 & 1 & 2 \\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
1 \\
2
\end{array}\right]
$$

Construct the augmented matrix

$$
\left[\begin{array}{lll|l}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
2 & 2 & 1 & 2
\end{array}\right]
$$

Apply the row operations as follows:

1. Add $-2 \bar{a}_{1}+4 \bar{a}_{2}$ to \bar{a}_{3}

$$
\left[\begin{array}{rrr|r}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

2. Add $-\bar{a}_{1}+2 \bar{a}_{2}$ to \bar{a}_{2}

$$
\left[\begin{array}{rrr|r}
3 & 1 & 2 & 6 \\
0 & -1 & 1 & -3 \\
0 & 0 & 1 & -6
\end{array}\right]
$$

This augmented matrix is in triangular form.
Solving

$$
\begin{aligned}
& x_{3}=-6 \\
& -x_{2}-x_{3}=-3 \quad \Rightarrow \quad x_{2}=-3 \\
& 3 x_{1}+x_{2}+2 x_{3}=6 \quad \Rightarrow \quad x_{1}=7
\end{aligned}
$$

The solution is $\bar{x}=\left[\begin{array}{ll}7-3-6\end{array}\right]^{\top}$

Inverse Matrix
A^{-1} is the inverse matrix of square matrix A if

$$
A A^{-1}=A^{-1} A=I
$$

Square matrix A is nonsingular (invertible) if its inverse A^{-1} exists.
How to compute A^{-1} of A ?

$$
[A \mid I] \xrightarrow[\substack{\text { elementary } \\ \text { row operations }}]{ }\left[I \mid A^{-1}\right]
$$

How to compute k th column of A^{-1} ?
Solve $A \bar{y}=e_{k}$, i.e.

$$
\left[\begin{array}{c|c}
A & \left.\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right] \xrightarrow[\text { row operations }]{ } \quad \bar{y}=\ldots \\
\left(k \text { th column of } A^{-1}\right)
\end{array}\right.
$$

Linear Inequality

$$
G: A \bar{x} \leq b
$$

represents the $\Sigma_{\mathbb{Q}}$-formula

$$
G:\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1}\right) \wedge \cdots \wedge\left(a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m}\right)
$$

The inequality describes a polyhedron in \mathbb{R}^{n}.
For $m \times n$-matrix A, m-vector b, variable n-vector \bar{x} where $m \geq n$:
An n-vector \bar{v} is a vertex of $A \bar{x} \leq b$ if there is nonsingular $n \times n$-submatrix A_{0} and corresponding n-subvector b_{0} s.t.

$$
A_{0} \bar{v}=b_{0}
$$

Optimization Problem

$$
\begin{array}{cl}
\max \quad \bar{c}^{\top} \bar{x} & \\
\text { subject to } & \\
A \bar{x} \leq \bar{b} \quad \ldots \text { objective function } \\
&
\end{array}
$$

Solution: vertex \bar{v}^{*} satisfying $A \bar{x} \leq \bar{b}$ and maximize $\bar{c}^{\top} \bar{x}$. That is,
$A \bar{v}^{*} \leq \bar{b}$ and $\bar{c}^{\top} \bar{v}^{*}$ is maximal: $\bar{c}^{\top} \bar{v}^{*} \geq \bar{c}^{\top} \bar{u}$ for all \bar{u} satisfying $A \bar{u} \leq \bar{b}$

- If $A \bar{x} \leq \bar{b}$ is unsatisfiable \Rightarrow maximum is $-\infty$
- It's possible that the maximum is unbounded
\Rightarrow maximum is ∞

Example: Consider optimization problem:

$$
\max \underbrace{\left[\begin{array}{cccc}
1 & 1 & -1 & -1
\end{array}\right]}_{\bar{c}^{\top}} \underbrace{\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]}_{\bar{x}}
$$

subject to

$$
\underbrace{\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right]}_{\bar{x}} \leq \underbrace{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
3 \\
2 \\
2
\end{array}\right]}_{\bar{b}}
$$

A is a 7×4-matrix, \bar{b} is a 7 -vector, and \bar{x} is a variable 4-vector representing the four variables $\left\{x, y, z_{1}, z_{2}\right\}$.

Example (cont):

The objective function is

$$
\left(x-z_{1}\right)+\left(y-z_{2}\right) .
$$

The constraints are equivalent to the $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{aligned}
& x \geq 0 \wedge y \geq 0 \wedge z_{1} \geq 0 \wedge z_{2} \geq 0 \\
& \wedge x+y \leq 3 \wedge x-z_{1} \leq 2 \wedge y-z_{2} \leq 2
\end{aligned}
$$

$\bar{v}=\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]^{\top}$ is a vertex of the constraints. For the nonsingular submatrix A_{0} (rows $3,4,5,6$ of A), we have

$$
\underbrace{\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0
\end{array}\right]}_{A_{0}} \underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]}_{\bar{v}}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
3 \\
2
\end{array}\right]}_{b_{0}}
$$

Duality Theorem

For $A \in \mathbb{Z}^{m \times n}, \bar{b} \in \mathbb{Z}^{m}, \bar{c} \in \mathbb{Z}^{n}$,

$$
\max \left\{\bar{c}^{\top} \bar{x} \mid A \bar{x} \leq \bar{b}\right\}=\min \left\{\bar{y}^{\top} \bar{b} \mid \bar{y} \geq \overline{0} \wedge \bar{y}^{\top} A=\bar{c}^{\top}\right\}
$$

if the constraints are satisfiable.

That is,
maximizing the function $c^{\top} \bar{x}$ over $A \bar{x} \leq \bar{b}$ (the primal form of the optimization problem) is equivalent to
minimizing the function $\bar{y}^{\top} \bar{b}$ over all the nonnegative \bar{y} s.t. $\bar{y}^{\top} A=\bar{c}^{\top}$
(the dual form of the optimization problem)

Outline of Algorithm

Given $\Sigma_{\mathbb{Q}}$-formula

$$
F: a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \wedge \cdots \wedge a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

or in matrix notation

$$
F: A \bar{x} \leq \bar{b}
$$

Note: • equations

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}
$$

are allowed --- break into two inequalities

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i} \wedge-a_{i 1} x_{1}-\ldots-a_{i n} x_{n} \leq-b_{i} .
$$

- Strict inequalities

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}<b_{i}
$$

excluded from our discussion - but can be added.

Outline of Algorithm (cont)

To determine the satisfiability of F,
Step 0: reformulate the satisfiability of F as an optimization problem

$$
M_{F}: \max \left\{\bar{c}^{\top} \bar{x}^{\prime} \mid A^{\prime} \bar{x}^{\prime} \leq \bar{b}^{\prime}\right\}
$$

s.t. F is $T_{\mathbb{Q}}$-satisfiable iff the optimal value of M_{F} is a particular value v_{F} (derived from the structure of F)

Step 1, Step 2, . . . (until termination) execute the simplex method

Outline of Algorithm (cont)

The simplex method traverses the vertices of $A^{\prime} \bar{x}^{\prime} \leq \bar{b}^{\prime}$ searching for the maximum of the objective function $\bar{c}^{\top} \bar{x}^{\prime}$: if $\bar{v}_{1}, \bar{v}_{2}, \ldots$ are the traversed vertices in Step 1, Step $2, \ldots$, then

$$
\bar{c}^{\top} \bar{v}_{1}<\bar{c}^{\top} \bar{v}_{2}<\cdots .
$$

The simplex method terminates at some vertex $\bar{v}_{i^{*}}$ where $\bar{c}^{\top} \bar{v}_{i^{*}}$ is the global optimum

Final step: Compare the discovered optimal value $\bar{c}^{\top} \bar{V}_{i^{*}}$ to the desired value v_{F}.

- if equal, then F is $T_{\mathbb{Q}}$-satisfiable
- otherwise, F is $T_{\mathbb{Q}}$-unsatisfiable

T_{Q}-Satisfiability

For a generic $\Sigma_{\mathbb{Q}}$-formula

$$
F: \bigwedge_{i=1}^{m} a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}
$$

the corresponding optimization problem is

$\max 1$
 subject to

$$
\bigwedge_{i=1}^{m} a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}
$$

The optimum is $-\infty$ iff the constraints are $T_{\mathbb{Q}}$-unsatisfiable and 1 otherwise.

$T_{\mathbb{Q}}$-Satisfiability (cont.)

For a generic $\Sigma_{\mathbb{Q}}$-formula

$$
\begin{aligned}
F & : \bigwedge_{i=1}^{m} a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i} \\
& \wedge \bigwedge_{i=1}^{\prime} a_{i 1} x_{1}+\cdots+a_{i n} x_{n}<\beta_{i}
\end{aligned}
$$

the corresponding optimization problem is
$\max x_{n}+1$
subject to

$$
\begin{array}{r}
\bigwedge_{i=1}^{m} a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i} \\
\bigwedge_{i=1}^{\prime} a_{i 1} x_{1}+\cdots+a_{i n} x_{n}+x_{n+1} \leq \beta_{i}
\end{array}
$$

The optimum is positive iff the constraints are $T_{\mathbb{Q}}$-satisfiable.

The Theory of Equality T_{E}

$$
\Sigma_{E}:\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}
$$

uninterpreted symbols:

- constants a, b, c, \ldots
- functions f, g, h, \ldots
- predicates p, q, r, \ldots

Example:

$$
\begin{aligned}
& x=y \wedge f(x) \neq f(y) \quad T_{E} \text {-unsatisfiable } \\
& f(x)=f(y) \wedge x \neq y \quad T_{E} \text {-satisfiable } \\
& f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
\end{aligned}
$$

T_{E}-unsatisfiable

Axioms of T_{E}

1. $\forall x \cdot x=x$

(reflexivity)

2. $\forall x, y \cdot x=y \rightarrow y=x$
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
define $=$ to be an equivalence relation.
Axiom schema
4. for each positive integer n and n-ary function symbol f,

$$
\begin{aligned}
\forall x_{1} & , \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \\
& \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

(congruence)
For example,

$$
\forall x, y . x=y \rightarrow f(x)=f(y)
$$

Then

$$
x=g(y, z) \rightarrow f(x)=f(g(y, z))
$$

is T_{E}-valid.

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot \bigwedge_{i} x_{i}=y_{i} \rightarrow \\
& \left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

(equivalence)

Thus,

$$
x=y \rightarrow(p(x) \leftrightarrow p(y))
$$

is T_{E}-valid.

We discuss T_{E}-formulae without predicates
For example, for Σ_{E}-formula

$$
F: p(x) \wedge q(x, y) \wedge q(y, z) \rightarrow \neg q(x, z)
$$

introduce fresh constant \bullet, and fresh functions f_{p} and f_{q}, and transform F to

$$
G: f_{p}(x)=\bullet \wedge f_{q}(x, y)=\bullet \wedge f_{q}(y, z)=\bullet \rightarrow f_{q}(x, z) \neq \bullet .
$$

Equivalence and Congruence Relations: Basics

Binary relation R over set S
\bullet is an equivalence relation if

- reflexive: $\forall s \in S . s R s$;
- symmetric: $\forall s_{1}, s_{2} \in S . s_{1} R s_{2} \rightarrow s_{2} R s_{1}$;
- transitive: $\forall s_{1}, s_{2}, s_{3} \in S . s_{1} R s_{2} \wedge s_{2} R s_{3} \rightarrow s_{1} R s_{3}$.

Example:
Define the binary relation \equiv_{2} over the set \mathbb{Z} of integers

$$
m \equiv 2 n \quad \text { iff } \quad(m \bmod 2)=(n \bmod 2)
$$

That is, $m, n \in \mathbb{Z}$ are related iff they are both even or both odd.
\equiv_{2} is an equivalence relation

- is a congruence relation if in addition

$$
\forall \bar{s}, \bar{t} . \bigwedge_{i=1}^{n} s_{i} R t_{i} \rightarrow f(\bar{s}) R f(\bar{t})
$$

Classes
For $\left\{\begin{array}{l}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ relation R over set S,
The $\left\{\begin{array}{l}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ class of $s \in S$ under R is

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

Example:
The equivalence class of 3 under \equiv_{2} over \mathbb{Z} is

$$
[3]_{\equiv_{2}}=\{n \in \mathbb{Z}: n \text { is odd }\} .
$$

Partitions

A partition P of S is a set of subsets of S that is

- total $\left(\bigcup_{S^{\prime} \in P} S^{\prime}\right)=S$
- disjoint $\forall S_{1}, S_{2} \in P . S_{1} \cap S_{2}=\varnothing$

Quotient

The quotient S / R of S by $\left\{\begin{array}{c}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ relation R is the set of $\left\{\begin{array}{l}\text { equivalence } \\ \text { congruence }\end{array}\right\}$ classes

$$
S / R=\left\{[s]_{R}: s \in S\right\} .
$$

It is a partition
Example: The quotient \mathbb{Z} / \equiv_{2} is a partition of \mathbb{Z}. The set of equivalence classes

$$
\{\{n \in \mathbb{Z}: n \text { is odd }\},\{n \in \mathbb{Z}: n \text { is even }\}\}
$$

Note duality between relations and classes

Refinements

Two binary relations R_{1} and R_{2} over set S.
R_{1} is refinement of $R_{2}, R_{1}<R_{2}$, if

$$
\forall s_{1}, s_{2} \in S . s_{1} R_{1} s_{2} \rightarrow s_{1} R_{2} s_{2}
$$

R_{1} refines R_{2}.

Examples:

- For $S=\{a, b\}$, $R_{1}:\left\{a R_{1} b\right\} \quad R_{2}:\left\{a R_{2} b, b R_{2} b\right\}$
Then $R_{1}<R_{2}$
- For set S,
R_{1} induced by the partition $P_{1}:\{\{s\}: s \in S\}$
R_{2} induced by the partition $P_{2}:\{S\}$
Then $R_{1}<R_{2}$.
- For set \mathbb{Z}
$R_{1}:\left\{x R_{1} y: x \bmod 2=y \bmod 2\right\}$
$R_{2}:\left\{x R_{2} y: x \bmod 4=y \bmod 4\right\}$
Then $R_{2}<R_{1}$.

Closures

Given binary relation R over S.
The equivalence closure R^{E} of R is the equivalence relation s.t.

- R refines R^{E}, i.e. $R<R^{E}$;
- for all other equivalence relations R^{\prime} s.t. $R<R^{\prime}$,

$$
\text { either } R^{\prime}=R^{E} \text { or } R^{E}<R^{\prime}
$$

That is, R^{E} is the "smallest" equivalence relation that "covers" R.
Example: If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

- $a R b, b R c, d R d \in R^{E} \quad$ since $R \subseteq R^{E}$;
- $a R a, b R b, c R c \in R^{E} \quad$ by reflexivity;
- bRa, $c R b \in R^{E} \quad$ by symmetry;
- $a R c \in R^{E} \quad$ by transitivity;
- cRa $\in R^{E}$ by symmetry.

Hence,

$$
R^{E}=\{a R b, b R a, a R a, b R b, b R c, c R b, c R c, a R c, c R a, d R d\}
$$

Similarly, the congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.

Congruence Closure Algorithm

Given Σ_{E}-formula

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

decide if F is Σ_{E}-satisfiable.
Definition: For Σ_{E}-formula F, the subterm set S_{F} of F is the set that contains precisely the subterms of F.

Example: The subterm set of

$$
F: f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

is

$$
S_{F}=\{a, b, f(a, b), f(f(a, b), b)\}
$$

The Algorithm

Given Σ_{E}-formula F

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

with subterm set S_{F}, F is T_{E}-satisfiable iff there exists a congruence relation \sim over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i} ;$
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Such congruence relation \sim defines T_{E}-interpretation $I:\left(D_{l}, \alpha_{l}\right)$ of F. D_{l} consists of $\left|S_{F} / \sim\right|$ elements, one for each congruence class of S_{F} under ~.

Instead of writing $/ \vDash F$ for this T_{E}-interpretation, we abbreviate

$$
\sim \vDash F
$$

The goal of the algorithm is to construct the congruence relation of S_{F}, or to prove that no congruence relation exists.
$F: \underbrace{s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}}_{\text {generate congruence closure }} \wedge \underbrace{s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}}_{\text {search for contradiction }}$
The algorithm performs the following steps:

1. Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim \vDash s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}
$$

2. If for any $i \in\{m+1, \ldots, n\}, s_{i} \sim t_{i}$, return unsatisfiable.
3. Otherwise, $\sim \vDash F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Initially, begin with the finest congruence relation \sim_{0} given by the partition

$$
\left\{\{s\}: s \in S_{F}\right\} .
$$

That is, let each term of S_{F} be its own congruence class.
Then, for each $i \in\{1, \ldots, m\}$, impose $s_{i}=t_{i}$ by merging the congruence classes

$$
\left[s_{i}\right]_{\sim_{i-1}} \quad \text { and } \quad\left[t_{i}\right]_{\sim_{i-1}}
$$

to form a new congruence relation \sim_{i}. To accomplish this merging,

- form the union of $\left[s_{i}\right]_{\sim_{i-1}}$ and $\left[t_{i}\right]_{N_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_{i} is a congruence relation in which $s_{i} \sim t_{i}$.

Directed Acyclic Graph (DAG)

For Σ_{E}-formula F, graph-based data structure for representing the subterms of S_{F} (and congruence relation between them).

Efficient way for computing the congruence closure algorithm.

T_{E}-Satisfiability (Summary of idea)

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

merge $f(a, b) a$

$f(a, b) \sim a, b \sim b \Rightarrow$
$f(f(a, b), b) \sim f(a, b)$
merge $f(f(a, b), b)$

$$
f(a, b)
$$

_ _ explicit equation
by congruence
find $f(f(a, b), b)=a=$ find $a, ~ 子$ Unsatisfiable

DAG representation

```
type node = {
```

id
fn : string
constant or function name
: id list
list of function arguments
mutable find : id
the representative of the congruence class
mutable ccpar : id set
if the node is the representative for its congruence class, then its ccpar (congruence closure parents) are all parents of nodes in its congruence class

DAG Representation of node 2

type node $=\{$			
\quad id	$:$	id	$\ldots 2$
fn	$:$	string	$\ldots f$
\quad args	$:$	idlist	$\ldots[3,4]$
\quad mutable find	$:$	id	$\ldots 3$
\quad mutable ccpar	$:$	idset	$\ldots \varnothing$
$\}$			

DAG Representation of node 3

type node $=\{$			
\quad id	$:$	id	$\ldots 3$
fn	$:$	string	$\ldots a$
args	$:$	idlist	$\ldots[]$
mutable find	$:$	id	$\ldots 3$
mutable ccpar	$:$	idset	$\ldots\{1,2\}$
$\}$			

The Implementation

find function

returns the representative of node's congruence class

> let rec find $i=$
> \quad let $n=$ node i in
> if n. find $=i$ then i else find $n . f$ ind

Example: find $2=3$
find $3=3$
3 is the representative of 2 .

union function

$$
\begin{aligned}
& \text { let union } i_{1} i_{2}= \\
& \text { let } n_{1}=\text { node }\left(\text { find } i_{1}\right) \text { in } \\
& \text { let } n_{2}=\text { node }\left(\text { find } i_{2}\right) \text { in } \\
& n_{1} . f i n d ~ \leftarrow n_{2} . f i n d ; \\
& n_{2} \cdot \text { ccpar } \leftarrow n_{1} . \text { ccpar } \cup n_{2} . \text { ccpar; } \\
& n_{1} . \text { ccpar } \leftarrow \varnothing
\end{aligned}
$$

n_{2} is the representative of the union class

Example

union $12 \quad n_{1}=1 \quad n_{2}=3$
1.find $\leftarrow 3$
3.ccpar $\leftarrow\{1,2\}$
1.ccpar $\leftarrow \varnothing$

ccpar function

Returns parents of all nodes in i's congruence class

$$
\begin{aligned}
& \text { let ccpar } i= \\
& \quad(\text { node }(\text { find } i)) . \text { ccpar }
\end{aligned}
$$

congruent predicate

Test whether i_{1} and i_{2} are congruent

$$
\begin{aligned}
& \text { let congruent } i_{1} i_{2}= \\
& \quad \text { let } n_{1}=\text { node } i_{1} \text { in } \\
& \text { let } n_{2}=\text { node } i_{2} \text { in } \\
& n_{1} . f n=n_{2} \cdot \text { fn } \\
& \quad \wedge\left|n_{1} \cdot \operatorname{args}\right|=\left|n_{2} \cdot \operatorname{args}\right| \\
& \quad \wedge \forall i \in\left\{1, \ldots,\left|n_{1} \cdot \operatorname{args}\right|\right\} . \text { find } n_{1} \cdot \operatorname{args}[i]=\text { find } n_{2} \cdot \operatorname{args}[i]
\end{aligned}
$$

Example:

Are 1 and 2 congruent?

fn fields	--- both f
\# of arguments	--- same

left arguments $f(a, b)$ and $a--$ - both congruent to 3
right arguments b and $b \quad---$ both 4 (congruent)
Therefore 1 and 2 are congruent.

merge function

```
let rec merge \(i_{1} i_{2}=\)
    if find \(i_{1} \neq\) find \(i_{2}\) then begin
        let \(P_{i_{1}}=\operatorname{ccpar} i_{1}\) in
        let \(P_{i_{2}}=\) ccpar \(i_{2}\) in
        union \(i_{1} i_{2}\);
        foreach \(t_{1}, t_{2} \in P_{i_{1}} \times P_{i_{2}}\) do
            if find \(t_{1} \neq\) find \(t_{2} \wedge\) congruent \(t_{1} t_{2}\)
            then merge \(t_{1} t_{2}\)
        done
    end
```

$P_{i_{1}}$ and $P_{i_{2}}$ store the current values of ccpar i_{1} and ccpar i_{2}.

Decision Procedure: T_{E}-satisfiability

Given Σ_{E}-formula

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

with subterm set S_{F}, perform the following steps:

1. Construct the initial DAG for the subterm set S_{F}.
2. For $i \in\{1, \ldots, m\}$, merge $s_{i} t_{i}$.
3. If find $s_{i}=$ find t_{i} for some $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
4. Otherwise (if find $s_{i} \neq$ find t_{i} for all $i \in\{m+1, \ldots, n\}$) return satisfiable.

Theorem (Sound and Complete)
Quantifier-free conjunctive Σ_{E}-formula F is T_{E}-satisfiable iff the congruence closure algorithm returns satisfiable.

Recursive Data Structures

Quantifier-free Theory of Lists $T_{\text {cons }}$

$$
\Sigma_{\text {cons }}:\{\text { cons, car, cdr, atom, }=\}
$$

- constructor cons : cons (a, b) list constructed by prepending a to b
- left projector car $: \operatorname{car}(\operatorname{cons}(a, b))=a$
- right projector $\mathrm{cdr}: \operatorname{cdr}(\operatorname{cons}(a, b))=b$
- atom : unary predicate

Axioms of $T_{\text {cons }}$

- reflexivity, symmetry, transitivity
- congruence axioms:

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

- equivalence axiom:

$$
\forall x, y . x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

(A1) $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
(A2) $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
(A3) $\forall x$. \neg atom $(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
(A4) $\forall x, y$. $\neg \operatorname{atom}(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)

Simplifications

- Consider only quantifier-free conjunctive $\Sigma_{\text {cons }}$-formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- \neg atom $\left(u_{i}\right)$ literals are removed:

$$
\text { replace } \neg \operatorname{atom}\left(u_{i}\right) \text { with } u_{i}=\operatorname{cons}\left(u_{i}^{1}, u_{i}^{2}\right)
$$

by the (construction) axiom.

- Because of similarity to Σ_{E}, we sometimes combine $\Sigma_{\text {cons }} \cup \Sigma_{\mathrm{E}}$.

Algorithm: $T_{\text {cons }}$-Satisfiability (the idea)

$$
\begin{aligned}
F: & \underbrace{s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}} \\
& \wedge \underbrace{}_{\begin{array}{c}
\text { search for contradiction } \\
\text { generate congruence closure } \\
s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
\end{array}} \\
& \underbrace{}_{\text {search for contradiction }\left(u_{1}\right) \wedge \cdots \wedge \text { atom }\left(u_{l}\right)}
\end{aligned}
$$

where s_{i}, t_{i}, and u_{i} are $T_{\text {cons }}$-terms

Algorithm: $T_{\text {cons }}$-Satisfiability

1. Construct the initial DAG for S_{F}
2. for each node n with $n . f n=$ cons

- add $\operatorname{car}(n)$ and merge car(n) n.args[1]
- add $\operatorname{cdr}(n)$ and merge $\operatorname{cdr}(n)$ n.args[2] by axioms (A1), (A2)

3. for $1 \leq i \leq m$, merge $s_{i} t_{i}$

4. for $m+1 \leq i \leq n$, if find $s_{i}=$ find t_{i}, return unsatisfiable
5. for $1 \leq i \leq l$, if $\exists v$. find $v=$ find $u_{i} \wedge v$.fn $=$ cons, return unsatisfiable
6. Otherwise, return satisfiable

Example:

Given $\left(\Sigma_{\text {cons }} \cup \Sigma_{\mathrm{E}}\right)$-formula

$$
\begin{gathered}
\text { } F: \quad \operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \\
\wedge \neg \operatorname{atom}(x) \wedge \neg \operatorname{atom}(y) \wedge f(x) \neq f(y)
\end{gathered}
$$

where the function symbol f is in Σ_{E}

$$
F^{\prime}: \begin{align*}
& \operatorname{car}(x)=\operatorname{car}(y) \tag{1}\\
& \operatorname{cdr}(x)=\operatorname{cdr}(y) \tag{2}\\
& x=\operatorname{cons}\left(u_{1}, v_{1}\right) \tag{3}\\
& \tag{4}\\
& y=\operatorname{cons}\left(u_{2}, v_{2}\right) \tag{5}\\
& \\
& f(x) \neq f(y)
\end{align*}
$$

Recall the projection axioms:
(A1) $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
(A2) $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$

Example(cont): congruence

