Verification

Lecture 23

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Decidability of first-order theories

Theory		full	QFF
T _E	Equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	integers	yes	yes
$\mathcal{T}_{\mathbb{R}}$	reals	yes	yes
$T_{\mathbb{Q}}$	rationals	yes	yes
T_{cons}	lists	no	yes
T_{A}	arrays	no	yes
<i>T</i> _A =	arrays with extensionality	no	yes

REVIEW: Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F', that is F is satisfiable iff F' is satisfiable

A theory T admits quantifier elimination if there is an algorithm that given Σ -formula F returns a quantifier-free Σ -formula G that is T-equivalent to F.

REVIEW: $\widehat{T}_{\mathbb{Z}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma}_{\mathbb{Z}}$ -formula $\exists x. F[x]$, where F is quantifier-free, construct quantifier-free $\widehat{\Sigma}_{\mathbb{Z}}$ -formula that is equivalent to $\exists x. F[x]$.

- 1. Put F[x] into Negation Normal Form (NNF).
- 2. Normalize literals: s < t, k | t, or $\neg(k | t)$
- 3. Put x in s < t on one side: hx < t or s < hx
- 4. Replace hx with x' without a factor
- 5. Replace F[x'] by $\bigvee F[j]$ for finitely many j.

Decision Procedures for Quantifier-free Fragments

For theory T with signature Σ and axioms Σ -formulae of form

$$\forall x_1,\ldots,x_n. F[x_1,\ldots,x_n]$$

Decide if

$$F[x_1,...,x_n]$$
 or $\exists x_1,...,x_n$. $F[x_1,...,x_n]$ is T -satisfiable

$$\left[\begin{array}{c} \text{Decide if} \\ F[x_1, \dots, x_n] \text{ or } \forall x_1, \dots, x_n. \, F[x_1, \dots, x_n] \text{ is } T\text{-valid} \end{array}\right]$$

where F is quantifier-free and free $(F) = \{x_1, \ldots, x_n\}$

Note: no quantifier alternations

We consider only conjunctive quantifier-free Σ -formulae, i.e., conjunctions of Σ -literals (Σ -atoms or negations of Σ -atoms). For given arbitrary quantifier-free Σ -formula F, convert it into DNF Σ -formula

$$F_1 \vee \ldots \vee F_k$$

where each F_i conjunctive.

F is T-satisfiable iff at least one F_i is T-satisfiable.

Preliminary Concepts

Vector

variable *n*-vector
$$n$$
-vector $\overline{a} \in \mathbb{Q}^n$

$$n$$
-vector $a \in \mathbb{Q}$

$$\overline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 $\overline{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$ $\overline{a}^T = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

Matrix

$$m \times n$$
-matrix

$$A \in \mathbb{Q}^{m \times n}$$

$$A = \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{bmatrix}$$

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} \cdots a_{m1} \\ \vdots \\ a_{1n} \cdots a_{mn} \end{bmatrix}$$

Multiplication

vector-vector

$$\overline{a}^{\mathsf{T}}\overline{b} = [a_1 \cdots a_n] \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \sum_{i=1}^n a_i b_i$$

matrix-vector

$$A\overline{x} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \vdots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i}x_i \\ \vdots \\ \sum_{i=1}^n a_{mi}x_i \end{bmatrix}$$

matrix-matrix

Tix-matrix
$$\begin{bmatrix} a_{ik} & b_{kj} & ell & b_{ij} \\ A & B & P \\ & & & & \end{bmatrix} = \begin{bmatrix} b_{1j} & b_{1j} \\ b_{1j} & b_{1j} \end{bmatrix}$$

where
$$p_{ij} = \overline{a}_i \overline{b}_j = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{vmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{vmatrix} = \sum_{k=1}^n a_{ik} b_{kj}$$

Special Vectors and Matrices

 $\overline{0}$ - vector (column) of 0s

 $\overline{1}$ - vector of 1s

Thus
$$\overline{1}^T \overline{x} = \sum_{i=1}^n x_i$$

$$I = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{bmatrix} \text{ identity matrix } (n \times n)$$

Thus IA = AI = A

unit vector
$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

Vector Space - set *S* of vectors closed under addition and scaling of vectors. That is,

if
$$\overline{v}_1, \dots, \overline{v}_k \in S$$
 then $\lambda_1 \overline{v}_1 + \dots + \lambda_k \overline{v}_k \in S$ for $\lambda_1, \dots, \lambda_n \in \mathbb{R}$.

Linear Equation

$$F: A\overline{x} = b$$
 $m \times n$ -matrix variable n -vector m -vector represents the $\Sigma_{\mathbb{Q}}$ -formula

$$F: (a_{11}x_1 + \cdots + a_{1n}x_n = b_1) \wedge \cdots \wedge (a_{m1}x_1 + \cdots + a_{mn}x_n = b_m)$$

Gaussian Elimination

Find \overline{x} s.t. $A\overline{x} = \overline{b}$ by elementary row operations

- Swap two rows.
- Multiply a row by a nonzero scalar.
- Add one row to another.

Example:

Solve

$$\begin{bmatrix} 3 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix}$$

Construct the augmented matrix

$$\left[\begin{array}{ccc|c}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
2 & 2 & 1 & 2
\end{array}\right]$$

Apply the row operations as follows:

1. Add
$$-2\overline{a}_1 + 4\overline{a}_2$$
 to \overline{a}_3

$$\left[\begin{array}{ccc|c}
3 & 1 & 2 & 6 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & -6
\end{array}\right]$$

2. Add $-\overline{a}_1 + 2\overline{a}_2$ to \overline{a}_2

$$\left[\begin{array}{ccc|c}
3 & 1 & 2 & 6 \\
0 & -1 & 1 & -3 \\
0 & 0 & 1 & -6
\end{array}\right]$$

This augmented matrix is in triangular form.

Solving

$$x_3 = -6$$

 $-x_2 - x_3 = -3$ \Rightarrow $x_2 = -3$
 $3x_1 + x_2 + 2x_3 = 6$ \Rightarrow $x_1 = 7$

The solution is
$$\overline{x} = [7 - 3 - 6]^T$$

Inverse Matrix

 A^{-1} is the inverse matrix of square matrix A if

$$AA^{-1} = A^{-1}A = I$$

Square matrix A is nonsingular (invertible) if its inverse A^{-1} exists.

How to compute A^{-1} of A?

$$[A \mid I] \xrightarrow{\text{elementary}} [I \mid A^{-1}]$$
row operations

How to compute kth column of A^{-1} ? Solve $A\overline{y} = e_k$, i.e.

$$\begin{bmatrix} A & \begin{vmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{\text{elementary}} \overline{y} = \dots$$

$$(k\text{th column of } A^{-1})$$
row operations

Linear Inequality

 $G: A\overline{x} \leq b$

represents the $\Sigma_{\mathbb{O}}$ -formula

G:
$$(a_{11}x_1 + \cdots + a_{1n}x_n \le b_1) \land \cdots \land (a_{m1}x_1 + \cdots + a_{mn}x_n \le b_m)$$

The inequality describes a polyhedron in \mathbb{R}^n .

For $m \times n$ -matrix A, m-vector b, variable n-vector \overline{x} where $m \ge n$:

An *n*-vector \overline{v} is a vertex of $A\overline{x} \le b$ if there is nonsingular $n \times n$ -submatrix A_0 and corresponding n-subvector b_0 s.t.

$$A_0\overline{v}=b_0$$

Optimization Problem

max
$$\overline{c}^T \overline{x}$$
 ... objective function subject to
$$A\overline{x} \leq \overline{b}$$
 ... constraints

Solution: vertex \overline{v}^* satisfying $A\overline{x} \leq \overline{b}$ and maximize $\overline{c}^T \overline{x}$. That is,

```
A\overline{v}^* \leq \overline{b} and \overline{c}^T \overline{v}^* is maximal: \overline{c}^T \overline{v}^* \geq \overline{c}^T \overline{u} for all \overline{u} satisfying A\overline{u} \leq \overline{b}
```

- ▶ If $A\overline{x} \le \overline{b}$ is unsatisfiable \Rightarrow maximum is $-\infty$
- It's possible that the maximum is unbounded
 - \Rightarrow maximum is ∞

Example: Consider optimization problem:

max
$$\underbrace{\begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}}_{\overline{c}^{T}} \underbrace{\begin{bmatrix} x \\ y \\ z_{1} \\ z_{2} \end{bmatrix}}_{\overline{x}}$$
subject to
$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \end{bmatrix}}_{\overline{x}} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$

A is a 7 × 4-matrix, \overline{b} is a 7-vector, and \overline{x} is a variable 4-vector representing the four variables $\{x, y, z_1, z_2\}$.

Example (cont):

The objective function is

$$(x-z_1)+(y-z_2).$$

The constraints are equivalent to the $\Sigma_{\mathbb{Q}}$ -formula

$$x \ge 0 \ \land \ y \ge 0 \ \land \ z_1 \ge 0 \ \land \ z_2 \ge 0$$

 $\land \ x + y \le 3 \ \land \ x - z_1 \le 2 \ \land \ y - z_2 \le 2$

 $\overline{v} = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T$ is a vertex of the constraints. For the nonsingular submatrix A_0 (rows 3, 4, 5, 6 of A), we have

$$\underbrace{\begin{bmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0
\end{bmatrix}}_{A_0} \underbrace{\begin{bmatrix}
2 \\
1 \\
0 \\
0
\end{bmatrix}}_{\overline{V}} = \underbrace{\begin{bmatrix}
0 \\
0 \\
3 \\
2
\end{bmatrix}}_{b_0}$$

Duality Theorem

For
$$A \in \mathbb{Z}^{m \times n}$$
, $\overline{b} \in \mathbb{Z}^m$, $\overline{c} \in \mathbb{Z}^n$,

$$\max\{\overline{c}^\mathsf{T}\overline{x} \mid A\overline{x} \leq \overline{b}\} = \min\{\overline{y}^\mathsf{T}\overline{b} \mid \overline{y} \geq \overline{0} \ \land \ \overline{y}^\mathsf{T}A = \overline{c}^\mathsf{T}\}$$

if the constraints are satisfiable.

Outline of Algorithm

Given $\Sigma_{\mathbb{Q}}$ -formula

$$F: a_{11}x_1 + \cdots + a_{1n}x_n \le b_1 \wedge \cdots \wedge a_{m1}x_1 + \cdots + a_{mn}x_n \le b_m$$

or in matrix notation

$$F: A\overline{x} \leq \overline{b}$$

Note: • equations

$$a_{i1}x_1 + \ldots + a_{in}x_n = b_i$$

are allowed --- break into two inequalities

$$a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i \wedge -a_{i1}x_1 - \ldots - a_{in}x_n \leq -b_i$$
.

Strict inequalities

$$a_{i1}x_1 + \cdots + a_{in}x_n < b_i$$
.

excluded from our discussion - but can be added.

Outline of Algorithm (cont)

To determine the satisfiability of F,

Step 0: reformulate the satisfiability of F as an optimization problem

$$M_F: \max\{\overline{c}^T\overline{x}' \mid A'\overline{x}' \leq \overline{b}'\}$$

s.t. F is $T_{\mathbb{Q}}$ -satisfiable iff the optimal value of M_F is a particular value v_F (derived from the structure of F)

Step 1, Step 2, ... (until termination) execute the simplex method

Outline of Algorithm (cont)

The simplex method traverses the vertices of $A'\overline{x}' \leq \overline{b}'$ searching for the maximum of the objective function $\overline{c}^T\overline{x}'$: if $\overline{v}_1, \overline{v}_2, \ldots$ are the traversed vertices in Step 1, Step 2, . . ., then

$$\overline{c}^T \overline{v}_1 < \overline{c}^T \overline{v}_2 < \cdots$$
.

The simplex method terminates at some vertex \overline{v}_{i^*} where $\overline{c}^T \overline{v}_{i^*}$ is the global optimum

Final step: Compare the discovered optimal value $\bar{c}^T \bar{v}_{i^*}$ to the desired value v_F .

- if equal, then F is $T_{\mathbb{O}}$ -satisfiable
- otherwise, F is $T_{\mathbb{O}}$ -unsatisfiable

$T_{\mathbb{Q}}$ -Satisfiability

For a generic $\Sigma_{\mathbb{Q}}$ -formula

$$F: \bigwedge_{i=1}^m a_{i1}x_1 + \cdots + a_{in}x_n \leq b_i$$

the corresponding optimization problem is

The optimum is $-\infty$ iff the constraints are $T_{\mathbb{Q}}$ -unsatisfiable and 1 otherwise.

$T_{\mathbb{Q}}$ -Satisfiability (cont.)

For a generic $\Sigma_{\mathbb{Q}}$ -formula

$$F: \bigwedge_{i=1}^{m} a_{i1}x_{1} + \dots + a_{in}x_{n} \leq b_{i} \\ \wedge \bigwedge_{i=1}^{l} a_{i1}x_{1} + \dots + a_{in}x_{n} < \beta_{i}$$

the corresponding optimization problem is

The optimum is positive iff the constraints are $T_{\mathbb{O}}$ -satisfiable.

The Theory of Equality T_E

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants a, b, c, \dots
- functions f, g, h, \dots
- predicates p, q, r, \dots

Example:

$$x = y \land f(x) \neq f(y)$$
 T_E -unsatisfiable $f(x) = f(y) \land x \neq y$ T_E -satisfiable $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$ T_E -unsatisfiable

Axioms of T_E

- 1. $\forall x. \ x = x$ (reflexivity)
- 2. $\forall x, y. \ x = y \rightarrow y = x$ (symmetry)
- 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity)

define = to be an equivalence relation.

Axiom schema

4. for each positive integer *n* and *n*-ary function symbol *f*,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ \land_i x_i = y_i$$

$$\rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$
 (congruence)

For example,

$$\forall x, y. \ x = y \rightarrow f(x) = f(y)$$

Then

$$x = g(y,z) \rightarrow f(x) = f(g(y,z))$$

is T_F -valid.

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \bigwedge_i x_i = y_i \rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$$
 (equivalence)

Thus,

$$x = y \rightarrow (p(x) \leftrightarrow p(y))$$

is T_F -valid.

We discuss T_E -formulae without predicates

For example, for Σ_E -formula

$$F: p(x) \wedge q(x,y) \wedge q(y,z) \rightarrow \neg q(x,z)$$

introduce fresh constant \bullet , and fresh functions f_p and f_q , and transform F to

$$G: \, f_p(x) = \bullet \, \wedge \, f_q(x,y) = \bullet \, \wedge \, f_q(y,z) = \bullet \, \rightarrow \, f_q(x,z) \neq \bullet \, .$$

Equivalence and Congruence Relations: Basics

Binary relation R over set S

- is an equivalence relation if
 - ▶ reflexive: $\forall s \in S$. sRs;
 - ▶ symmetric: $\forall s_1, s_2 \in S$. $s_1Rs_2 \rightarrow s_2Rs_1$;
 - ▶ transitive: $\forall s_1, s_2, s_3 \in S$. $s_1Rs_2 \land s_2Rs_3 \rightarrow s_1Rs_3$.

Example:

Define the binary relation \equiv_2 over the set \mathbb{Z} of integers

$$m \equiv_2 n$$
 iff $(m \mod 2) = (n \mod 2)$

That is, $m, n \in \mathbb{Z}$ are related iff they are both even or both odd. \equiv_2 is an equivalence relation

• is a congruence relation if in addition

$$\forall \bar{s}, \bar{t}. \bigwedge_{i=1}^{n} s_{i}Rt_{i} \rightarrow f(\bar{s})Rf(\bar{t}).$$

Classes

For
$$\left\{\begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array}\right\}$$
 relation R over set S ,

The $\left\{\begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array}\right\}$ class of $s \in S$ under R is

$$[s]_R \stackrel{\text{def}}{=} \{s' \in S : sRs'\}$$
.

Example:

The equivalence class of 3 under \equiv_2 over \mathbb{Z} is

$$[3]_{\equiv_2} = \{n \in \mathbb{Z} : n \text{ is odd}\}.$$

Partitions

A partition P of S is a set of subsets of S that is

► total
$$\left(\bigcup_{S' \in P} S'\right) = S$$

• disjoint
$$\forall S_1, S_2 \in P. S_1 \cap S_2 = \emptyset$$

Quotient

The quotient
$$S/R$$
 of S by $\begin{cases} equivalence \\ congruence \end{cases}$ relation R is the set of $\begin{cases} equivalence \\ congruence \end{cases}$ classes

$$S/R = \{[s]_R : s \in S\}.$$

It is a partition

Example: The quotient \mathbb{Z}/\equiv_2 is a partition of \mathbb{Z} . The set of equivalence classes

$$\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$$

Note duality between relations and classes

Refinements

Two binary relations R_1 and R_2 over set S.

 R_1 is refinement of R_2 , $R_1 < R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2.$$

 R_1 refines R_2 .

Examples:

```
For S = \{a, b\},

R_1 : \{aR_1b\} R_2 : \{aR_2b, bR_2b\}

Then R_1 < R_2
```

▶ For set S,

 R_1 induced by the partition $P_1: \{\{s\}: s \in S\}$ R_2 induced by the partition $P_2: \{S\}$

Then $R_1 < R_2$.

▶ For set Z

 $R_1 : \{xR_1y : x \mod 2 = y \mod 2\}$ $R_2 : \{xR_2y : x \mod 4 = y \mod 4\}$

Then $R_2 < R_1$.

Closures

Given binary relation R over S.

The equivalence closure R^E of R is the equivalence relation s.t.

- R refines R^E , i.e. $R < R^E$;
- for all other equivalence relations R' s.t. R < R', either $R' = R^E$ or $R^E < R'$

That is, R^E is the "smallest" equivalence relation that "covers" R.

Example: If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- aRb, bRc, $dRd \in R^E$ since $R \subseteq R^E$;
- $aRa, bRb, cRc \in R^E$ by reflexivity;
- $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry.

Hence,

$$R^{E} = \{aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd\}$$
.

Similarly, the congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Congruence Closure Algorithm

Given Σ_E -formula

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

decide if F is Σ_E -satisfiable.

Definition: For Σ_E -formula F, the subterm set S_F of F is the set that contains precisely the subterms of F.

Example: The subterm set of

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

is

$$S_F = \{a, b, f(a,b), f(f(a,b),b)\}.$$

The Algorithm

Given Σ_E -formula F

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

with subterm set S_F , F is T_E -satisfiable iff there exists a congruence relation \sim over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- ▶ for each $i \in \{m+1, ..., n\}$, $s_i \not\uparrow t_i$.

Such congruence relation \sim defines T_E -interpretation $I:(D_I,\alpha_I)$ of F. D_I consists of $|S_F| \sim |$ elements, one for each congruence class of S_F under \sim .

Instead of writing $I \models F$ for this T_E -interpretation, we abbreviate $\sim \models F$

The goal of the algorithm is to construct the congruence relation of S_F , or to prove that no congruence relation exists.

$$F: \underbrace{s_1 = t_1 \land \cdots \land s_m = t_m}_{\text{generate congruence closure}} \land \underbrace{s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$$

The algorithm performs the following steps:

1. Construct the congruence closure ~ of

$$\{s_1=t_1,\ldots,s_m=t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \wedge \cdots \wedge s_m = t_m$$
.

- 2. If for any $i \in \{m+1,...,n\}$, $s_i \sim t_i$, return unsatisfiable.
- 3. Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Initially, begin with the finest congruence relation ${\scriptstyle \sim}_0$ given by the partition

$$\left\{\left\{s\right\} : s \in S_F\right\}.$$

That is, let each term of S_F be its own congruence class.

Then, for each $i \in \{1, ..., m\}$, impose $s_i = t_i$ by merging the congruence classes

$$[s_i]_{\sim_{i-1}}$$
 and $[t_i]_{\sim_{i-1}}$

to form a new congruence relation \sim_i . To accomplish this merging,

- form the union of $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.

Directed Acyclic Graph (DAG)

For Σ_E -formula F, graph-based data structure for representing the subterms of S_E (and congruence relation between them).

Efficient way for computing the congruence closure algorithm.

T_E -Satisfiability (Summary of idea)

DAG representation

```
type node = {
                         id
    id
                         node's unique identification number
    fn
                         string
                         constant or function name
                      : id list
    args
                         list of function arguments
                      : id
    mutable find
                         the representative of the congruence class
    mutable ccpar
                         id set
                         if the node is the representative for its
                         congruence class, then its ccpar
                         (congruence closure parents) are all
                         parents of nodes in its congruence class
```

DAG Representation of node 2

```
type node = {
   id : id ...2
   fn : string ...f
   args : idlist ...[3,4]
   mutable find : id ...3
   mutable ccpar : idset ...\varnothing
}
```


DAG Representation of node 3

The Implementation

find function

returns the representative of node's congruence class

```
let rec find i =
  let n = node i in
  if n.find = i then i else find n.find
```


Example: find 2 = 3 find 3 = 3

3 is the representative of 2.

union function

```
let union i_1 i_2 =

let n_1 = \text{node} (\text{find } i_1) \text{ in}

let n_2 = \text{node} (\text{find } i_2) \text{ in}

n_1.\text{find} \leftarrow n_2.\text{find};

n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};

n_1.\text{ccpar} \leftarrow \varnothing
```

 n_2 is the representative of the union class

Example

union 1 2
$$n_1 = 1$$
 $n_2 = 3$
1.find $\leftarrow 3$
3.ccpar $\leftarrow \{1, 2\}$
1.ccpar $\leftarrow \emptyset$

ccpar function

Returns parents of all nodes in i's congruence class

```
let ccpar i = (\text{node } (\text{find } i)).\text{ccpar}
```

congruent predicate

Test whether i_1 and i_2 are congruent

```
let congruent i_1 i_2 =
let n_1 = node i_1 in
let n_2 = node i_2 in
n_1.\text{fn} = n_2.\text{fn}
\land |n_1.\text{args}| = |n_2.\text{args}|
\land \forall i \in \{1, \dots, |n_1.\text{args}|\}. \text{ find } n_1.\text{args}[i] = \text{find } n_2.\text{args}[i]
```

Example:

Are 1 and 2 congruent?

```
fn fields --- both f
# of arguments --- same
left arguments f(a,b) and a --- both congruent to 3
right arguments b and b --- both 4 (congruent)
```

Therefore 1 and 2 are congruent.

merge function

```
let rec merge i_1 i_2 =
  if find i_1 \neq find i_2 then begin
  let P_{i_1} = ccpar i_1 in
  let P_{i_2} = ccpar i_2 in
  union i_1 i_2;
  foreach t_1, t_2 \in P_{i_1} \times P_{i_2} do
  if find t_1 \neq find t_2 \wedge congruent t_1 t_2
  then merge t_1 t_2
  done
  end
```

 P_{i_1} and P_{i_2} store the current values of ccpar i_1 and ccpar i_2 .

Decision Procedure: T_E -satisfiability

Given Σ_E -formula

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

with subterm set S_F , perform the following steps:

- 1. Construct the initial DAG for the subterm set S_F .
- 2. For $i \in \{1, ..., m\}$, merge $s_i t_i$.
- 3. If find s_i = find t_i for some $i \in \{m+1,...,n\}$, return unsatisfiable.
- 4. Otherwise (if find $s_i \neq \text{find } t_i \text{ for all } i \in \{m+1,\ldots,n\}$) return satisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_E -formula F is T_E -satisfiable iff the congruence closure algorithm returns satisfiable.

Recursive Data Structures

Quantifier-free Theory of Lists T_{cons}

```
\Sigma_{cons}: {cons, car, cdr, atom, =}
```

- constructor cons : cons(a, b) list constructed by prepending a to b
- left projector car : car(cons(a,b)) = a
- right projector cdr : cdr(cons(a, b)) = b
- atom : unary predicate

Axioms of T_{cons}

- reflexivity, symmetry, transitivity
- congruence axioms:

$$\forall x_1, x_2, y_1, y_2. x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$$

 $\forall x, y. x = y \rightarrow car(x) = car(y)$
 $\forall x, y. x = y \rightarrow cdr(x) = cdr(y)$

equivalence axiom:

$$\forall x, y. x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

 $(A1) \ \forall x,y. \ \mathsf{car}(\mathsf{cons}(x,y)) = x \qquad \qquad \mathsf{(left projection)} \\ (A2) \ \forall x,y. \ \mathsf{cdr}(\mathsf{cons}(x,y)) = y \qquad \qquad \mathsf{(right projection)} \\ (A3) \ \forall x. \ \neg \mathsf{atom}(x) \to \mathsf{cons}(\mathsf{car}(x),\mathsf{cdr}(x)) = x \qquad \mathsf{(construction)} \\ (A4) \ \forall x,y. \ \neg \mathsf{atom}(\mathsf{cons}(x,y)) \qquad \qquad \mathsf{(atom)} \\ \end{cases}$

Simplifications

- Consider only quantifier-free conjunctive Σ_{cons} -formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- ▶ \neg atom(u_i) literals are removed:

replace
$$\neg atom(u_i)$$
 with $u_i = cons(u_i^1, u_i^2)$

by the (construction) axiom.

▶ Because of similarity to Σ_{E} , we sometimes combine $\Sigma_{\text{cons}} \cup \Sigma_{\text{E}}$.

Algorithm: T_{cons} -Satisfiability (the idea)

F:
$$\underbrace{s_1 = t_1 \land \cdots \land s_m = t_m}_{\text{generate congruence closure}}$$

$$\land \underbrace{s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$$

$$\land \underbrace{atom(u_1) \land \cdots \land atom(u_l)}_{\text{search for contradiction}}$$

where s_i , t_i , and u_i are T_{cons} -terms

Algorithm: T_{cons} -Satisfiability

- 1. Construct the initial DAG for S_F
- 2. for each node n with n.fn = cons
 - add car(n) and merge car(n) n.args[1]
 - add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)

- 3. for $1 \le i \le m$, merge $s_i t_i$
- 4. for $m + 1 \le i \le n$, if find $s_i = \text{find } t_i$, return **unsatisfiable**
- 5. for $1 \le i \le l$, if $\exists v$. find $v = \text{find } u_i \land v. \texttt{fn} = \texttt{cons}$, return **unsatisfiable**
- 6. Otherwise, return satisfiable

Example:

Given $(\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathsf{E}})$ -formula

$$F: \qquad \begin{aligned} \mathsf{car}(x) &= \mathsf{car}(y) \ \land \ \mathsf{cdr}(x) &= \mathsf{cdr}(y) \\ \land \neg \mathsf{atom}(x) \ \land \ \neg \mathsf{atom}(y) \ \land \ f(x) \neq f(y) \end{aligned}$$

where the function symbol f is in Σ_{E}

$$car(x) = car(y) \wedge (1)$$

$$\operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge$$
 (2)

$$F': \qquad x = \cos(u_1, v_1) \quad \land \tag{3}$$

$$y = cons(u_2, v_2) \quad \land \tag{4}$$

$$f(x) \neq f(y) \tag{5}$$

Recall the projection axioms:

(A1)
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$

(A2)
$$\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$$

Example(cont): congruence

