
Verification

Lecture 22

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



REVIEW: Decidability of first-order theories

Theory full QFF

TE Equality no yes

TPA Peano arithmetic no no

TN Presburger arithmetic yes yes

TZ integers yes yes

TR reals yes yes

TQ rationals yes yes

Tcons lists no yes

TA arrays no yes

T=A arrays with extensionality no yes



Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until

quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F′,

that is F is satisfiable iff F′ is satisfiable

A theory T admits quantifier elimination if there is an algorithm that

given Σ-formula F returns a quantifier-free Σ-formula G that is

T-equivalent to F.



Example

▸ For ΣQ-formula

F ∶ ∃x. 2x = y,

quantifier-free TQ-equivalent ΣQ-formula is

G ∶ ⊺

▸ For ΣZ-formula

F ∶ ∃x. 2x = y,

there is no quantifier-free TZ-equivalent ΣZ-formula.

▸ Let T
Ẑ
be TZ with divisibility predicates ∣.

For Σ
Ẑ
-formula

F ∶ ∃x. 2x = y,

a quantifier-free T
Ẑ
-equivalent Σ

Ẑ
-formula is

G ∶ 2 ∣ y.



In developing a QE algorithm for theory T , we need only consider

formulae of the form

∃x. F
for quantifier-free F

Example: For Σ-formula

G1∶ ∃x. ∀y. ∃z. F1[x, y, z]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2[x,y]

G2∶ ∃x. ∀y. F2[x, y]
G3∶ ∃x. ¬∃y. ¬F2[x, y]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F3[x]

G4∶ ∃x. ¬F3[x]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F4

G5∶ F4

G5 is quantifier-free and T-equivalent to G1



Quantifier Elimination for TZ

ΣZ ∶ {. . . ,−2,−1, 0, 1, 2, . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . , +, −, =, <}
Lemma:

Given quantifier-free ΣZ-formula F s.t. free(F) = {y}.
F represents the set of integers

S ∶ {n ∈ Z ∶ F{y ↦ n} is TZ-valid} .
Either S ∩Z+ or Z+ ∖ S is finite.

where Z+ is the set of positive integers

Example: ΣZ-formula F ∶ ∃x. 2x = y

S: even integers

S ∩Z+: positive even integers --- infinite

Z+ ∖ S: positive odd integers --- infinite

Therefore, by the lemma, there is no quantifier-free TZ-formula that

is TZ-equivalent to F.

Thus, TZ does not admit QE.



Augmented theory T̂Z

Σ̂Z: ΣZ with countable number of unary divisibility predicates

k ∣ ⋅ for k ∈ Z+

Intended interpretations:

k ∣ x holds iff k divides x without any remainder

Example:

x > 1 ∧ y > 1 ∧ 2 ∣ x + y

is satisfiable (choose x = 2, y = 2).

¬(2 ∣ x) ∧ 4 ∣ x
is not satisfiable.

Axioms of T̂Z: axioms of TZ with additional countable set of axioms

∀x. k ∣ x ↔ ∃y. x = ky for k ∈ Z+



T̂Z admits QE (Cooper’s method)

Algorithm: Given Σ̂Z-formula ∃x. F[x], where F is quantifier-free,
construct quantifier-free Σ̂Z-formula that is equivalent to ∃x. F[x].
1. Put F[x] into Negation Normal Form (NNF).

2. Normalize literals: s < t, k∣t, or ¬(k∣t)
3. Put x in s < t on one side: hx < t or s < hx

4. Replace hx with x′ without a factor

5. Replace F[x′] by⋁ F[j] for finitely many j.



Step 1: NNF

Put F[x] into NNF F1[x], that is,∃x. F1[x] has negations only in literals (only ∧, ∨)
and T̂Z-equivalent to ∃x. F[x]

To transform F to equivalent F′ in NNF use recursively

the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬⊺ ⇔ � ¬� ⇔ ⊺
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2 }De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)



Step 2: Normalize literals

Normalize literals: s < t, k∣t, or ¬(k∣t)
Replace (left to right)

s = t ⇔ s < t + 1 ∧ t < s + 1¬(s = t) ⇔ s < t ∨ t < s¬(s < t) ⇔ t < s + 1

The output ∃x. F2[x] contains only literals of form
s < t , k ∣ t , or ¬(k ∣ t) ,

where s, t are T̂Z-terms and k ∈ Z+.



Step 3: Put x on one side

Put x in s < t on one side: hx < t or s < hx

Collect terms containing x so that literals have the form

hx < t , t < hx , k ∣ hx + t , or ¬(k ∣ hx + t) ,
where t is a term and h, k ∈ Z+. The output is the formula ∃x. F3[x],
which is T̂Z-equivalent to ∃x. F[x].



Step 4: Eliminate coefficients

Replace hx with x′ without a factor

Let

δ
′ = lcm{h ∶ h is a coefficient of x in F3[x]} ,

where lcm is the least commonmultiple. Multiply atoms in F3[x] by
constants so that δ′ is the coefficient of x everywhere:

hx < t ⇔ δ
′x < h′t where h′h = δ

′

t < hx ⇔ h′t < δ
′x where h′h = δ

′

k ∣ hx + t ⇔ h′k ∣ δ′x + h′t where h′h = δ
′

¬(k ∣ hx + t) ⇔ ¬(h′k ∣ δ′x + h′t) where h′h = δ
′

The result ∃x. F′3[x], in which all occurrences of x in F′3[x] are in
terms δ′x.

Replace δ′x terms in F′3 with a fresh variable x′ to form

F′′3 ∶ F3{δ′x ↦ x′}



Finally, construct

∃x′. F′′3 [x′] ∧ δ
′ ∣ x′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F4[x′]

∃x′.F4[x′] is equivalent to ∃x. F[x] and each literal of F4[x′] has one
of the forms:

(A) x′ < a

(B) b < x′

(C) h ∣ x′ + c

(D) ¬(k ∣ x′ + d)
where a, b, c, d are terms that do not contain x, and h, k ∈ Z+.



Step 5: Eliminate x′
Replace F[x′] by⋁ F[j] for finitely many j.

1. Construct

left infinite projection F−∞[x′]
of F4[x′] by
(A) replacing literals x′ < a by ⊺
(B) replacing literals b < x′ by �
idea: very small numbers satisfy (A) literals but not (B) literals

2. Let

δ = lcm{ h of (C) literals h ∣ x′ + c

k of (D) literals ¬(k ∣ x′ + d) }
and B be the set of b terms appearing in (B) literals. Construct

F5 ∶ δ⋁
j=1

F−∞[j] ∨ δ⋁
j=1

⋁
b∈B

F4[b + j] .
F5 is quantifier-free and T̂Z-equivalent to F.



Intuition of Step 5

Property (Periodicity)

if k ∣ δ
then k ∣ n iff k ∣ n + λδ for all λ ∈ Z

That is, k ∣⋅ cannot distinguish between k ∣ n and k ∣ n + λδ.

By the choice of δ (lcm of the h’s and k’s) --- no ∣ literal in F5 can

distinguish between n and n + δ.

F5 ∶ δ⋁
j=1

F−∞[j] ∨ δ⋁
j=1

⋁
b∈B

F4[b + j]



Intuition of Step 5

left disjunct⋁δ

j=1 F−∞[j] :
Contains only ∣ literals
Asserts: no least n ∈ Z s.t. F[n].
If there exists n satisfying F−∞,

then every n − λδ, for λ ∈ Z+, also satisfies F−∞

right disjunct⋁δ

j=1⋁b∈B F4[b + j] :
If n ∈ Z is s.t. F[n],
let b∗ be the largest b in (B) such that b < n is satisfied

then∃j(1 ≤ j ≤ δ). b∗ + j ≤ n ∧ F[b∗ + j]
In other words,

if there is a solution,

then one must already appear in δ interval to the right of some b



Improvement: Symmetric Elimination

In Step 5, if there are fewer

(A) literals x′ < a

than

(B) literals b < x′.

Construct the right infinite projection F+∞[x′] from F4[x′] by
replacing

each (A) literal x′ < a by �
and

each (B) literal b < x′ by ⊺.
Then right elimination.

F5 ∶ δ⋁
j=1

F+∞[−j] ∨ δ⋁
j=1

⋁
a∈A

F4[a − j] .



Improvement: Eliminating Blocks of Quantifiers

∃x1.⋯∃xn. F[x1, . . . , xn]
where F quantifier-free.

Eliminating xn (left elimination) produces

G1 ∶ ∃x1.⋯∃xn−1. δ⋁
j=1

F−∞[x1, . . . , xn−1, j] ∨
δ⋁
j=1

⋁
b∈B

F4[x1, . . . , xn−1, b + j]
which is equivalent to

G2 ∶ δ⋁
j=1

∃x1.⋯∃xn−1. F−∞[x1, . . . , xn−1, j] ∨
δ⋁
j=1

⋁
b∈B

∃x1.⋯∃xn−1. F4[x1, . . . , xn−1, b + j]
Treat j as a free variable and examine only 1 + ∣B∣ formulae

▸ ∃x1.⋯∃xn−1. F−∞[x1, . . . , xn−1, j]
▸ ∃x1.⋯∃xn−1. F4[x1, . . . , xn−1, b + j] for each b ∈ B


