Verification

Lecture 21

Bernd Finkbeiner
Peter Faymonville Michael Gerke

Propositional Logic (PL)

PL Syntax

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$F_{1} \wedge F_{2}$	"and"	(conjunction)
$F_{1} \vee F_{2}$	"or"	(disjunction)
$F_{1} \rightarrow F_{2}$	"implies"	(implication)
$F_{1} \leftrightarrow F_{2}$	"if and only if"	(iff)

PL Semantics

Formula $F+$ Interpretation $/=$ Truth value (true, false)
Interpretation

$$
I:\{P \mapsto \text { true }, Q \mapsto \text { false }, \cdots\}
$$

Evaluation of F under I :

F	$\neg F$	where 0
0	1	1

F_{1}	F_{2}	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Satisfiability and Validity

F is satisfiable iff there exists an interpretation $/$ such that $I \vDash F$.
F is valid iff for all interpretations $I, I \vDash F$.
F is valid iff $\neg F$ is unsatisfiable
Satisifability and validity are decidable (truth tables, BDDs, DPLL, ...)
Example $\quad F: P \wedge Q \rightarrow P \vee \neg Q$

$P Q$	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F	
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables
constants
functions
terms

$$
x, y, z, \cdots
$$

$$
a, b, c, \cdots
$$

$$
f, g, h, \cdots
$$

variables, constants or n-ary function applied to n terms as arguments $a, x, f(a), g(x, b), f(g(x, g(b)))$
predicates $\quad p, q, r, \cdots$
atom $\quad T, \perp$, or an n-ary predicate applied to n terms
literal
atom or its negation

$$
p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))
$$

Note: 0-ary functions: constant 0 -ary predicates: P, Q, R, \ldots

Quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\quad \forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example: FOL formula

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a y such that
$p(f(g(x, y)), g(x, y))$ and $q(x, f(x))^{\prime \prime}$

FOL Semantics

An interpretation I: $\left(D_{l}, \alpha_{l}\right)$ consists of:

- Domain D_{l} non-empty set of values or objects cardinality $\left|D_{l}\right| \quad$ finite (eg, 52 cards), countably infinite (eg, integers), or uncountably infinite (eg, reals)
- Assignment α_{I}
- each variable x assigned value $x_{l} \in D_{l}$
- each n-ary function f assigned

$$
f_{l}: D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0 -ary function) assigned value $a_{l} \in D_{l}$

- each n-ary predicate p assigned

$$
p_{l}: D_{l}^{n} \rightarrow\{\text { true, false }\}
$$

In particular, each propositional variable P (0-ary predicate) assigned truth value (true, false)

Example:

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{l}, \alpha_{l}\right)$
$D_{I}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad$ integers
$\alpha_{l}:\{f \mapsto+, g \mapsto-, p \mapsto>\}$
Therefore, we can write

$$
F_{l}: x+y>z \rightarrow y>z-x
$$

(This is the way we'll write it in the future!)
Also
$\alpha_{l}:\{x \mapsto 13, y \mapsto 42, z \mapsto 1\}$
Thus

$$
F_{l}: 13+42>1 \rightarrow 42>1-13
$$

Compute the truth value of F under I

$$
\begin{array}{llll}
\text { 1. } & I \vDash x+y>z & \text { since } 13+42>1 \\
\text { 2. } & I \not \vDash y>z-x & \text { since } 42>1-13 \\
3 . & I \vDash F & \text { by } 1,2, \text { and } \rightarrow
\end{array}
$$

F is true under I

Semantics: Quantifiers

x variable.
x-variant of interpretation $/$ is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{l}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote $J: I \triangleleft\{x \mapsto \mathrm{v}\}$ the x-variant of $/$ in which $\alpha J[x]=\mathrm{v}$ for some $v \in D_{l}$. Then

- $I \vDash \forall x . F \quad$ iff for all $v \in D_{l}, I \triangleleft\{x \mapsto v\} \vDash F$
- $I \vDash \exists x$. $F \quad$ iff there exists $\mathrm{v} \in D_{l}$ s.t. $I \triangleleft\{x \mapsto \mathrm{v}\} \vDash F$

Example

For \mathbb{Q}, the set of rational numbers, consider

$$
F: \forall x . \exists y .2 \times y=x
$$

Compute the value of $F_{l}(F$ under $I)$:
Let

$$
\begin{array}{ll}
J_{1}: I \triangleleft\{x \mapsto v\} & J_{2}: J_{1} \triangleleft\left\{y \mapsto \frac{v}{2}\right\} \\
x \text {-variant of } l & y \text {-variant of } J_{1}
\end{array}
$$

for $v \in \mathbb{Q}$.
Then

1. $J_{2} \vDash 2 \times y=x \quad$ since $2 \times \frac{v}{2}=v$
2. $J_{1} \vDash \exists y .2 \times y=x$
3. I $\quad \forall x . \exists y .2 \times y=x \quad$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

F is satisfiable iff there exists $/$ s.t. $/ \vDash F$
F is valid iff for all $I, I \vDash F$
F is valid iff $\neg F$ is unsatisfiable

- FOL is undecidable (Turing \& Church) There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.
- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

Proof rules for propositional logic

$$
\begin{aligned}
& \frac{l \vDash \neg F}{l \neq F} \\
& \frac{l \neq \neg F}{l \vDash F} \\
& \begin{array}{l}
l \vDash F \wedge G \\
l \vDash F \\
l \vDash G
\end{array} \\
& \\
& \frac{I \nexists F \vee G}{I \nexists F} \\
& l \neq G
\end{aligned}
$$

$$
\begin{aligned}
& \frac{l \neq F \rightarrow G}{l \vDash F} \\
& \text { I \# G } \\
& \frac{l \vDash F \leftrightarrow G}{I \vDash F \wedge G|\mid \neq F \vee G} \quad \frac{l \neq F \leftrightarrow G}{l \vDash F \wedge \neg G|\quad| \vDash \neg F \wedge G} \\
& \begin{array}{l}
l \vDash F \\
l \neq F \\
\frac{l \vDash \perp}{}
\end{array}
\end{aligned}
$$

Semantic Argument Method

Proof rules for quantifiers

$$
\begin{aligned}
& \frac{l \vDash \forall x . F}{l \triangleleft\{x \mapsto v\} \vDash F} \\
& \frac{l \nexists \exists x . F}{l \triangleleft\{x \mapsto v\} \neq F} \\
& \frac{l \vDash \exists x . F}{l \triangleleft\{x \mapsto v\} \vDash F} \text { for a fresh } v \in D_{l} \\
& \frac{l \notin \forall x . F}{I \triangleleft\{x \mapsto v\} \nexists F} \text { for a fresh } v \in D_{l} \\
& \begin{array}{l}
J: I \triangleleft\{\cdots \mapsto \cdots\} \vDash p\left(s_{1}, \ldots, s_{n}\right) \\
\frac{K: I \triangleleft\{\cdots \mapsto \cdots\} \not \models p\left(t_{1}, \ldots, t_{n}\right)}{I \vDash \perp}
\end{array} \text { for all } i \in\{1, \ldots, n\}, \alpha_{\jmath}\left[s_{i}\right]=\alpha_{K}\left[t_{i}\right]
\end{aligned}
$$

First-Order Theories

First-order theory T defined by

- Signature Σ - set of constant, function, and predicate symbols
- Set of axioms A_{T} - set of closed (no free variables) Σ-formulae
Σ-formula constructed of constants, functions, and predicate symbols from Σ, and variables, logical connectives, and quantifiers

The symbols of Σ are just symbols without prior meaning --- the axioms of T provide their meaning

A Σ-formula F is valid in theory T (T-valid, also $T \vDash F$), if every interpretation / that satisfies the axioms of T,
i.e. $I \vDash A$ for every $A \in A_{T}$ (T-interpretation)
also satisfies F,
i.e. $l \vDash F$

A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_{1} and F_{2} are equivalent in T (T-equivalent), if
$T \vDash F_{1} \leftrightarrow F_{2}$,
i.e. if for every T-interpretation $I, I \vDash F_{1}$ iff $I \vDash F_{2}$

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free segment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \vDash F$ (T-validity) is decidable for every Σ-formula F,
i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.
A fragment of T is decidable if $T \vDash F$ is decidable for every Σ-formula F in the fragment.

Theory of Equality T_{E}

Signature

$$
\Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}
$$

consists of

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_{E}

1. $\forall x \cdot x=x$
2. $\forall x, y . x=y \rightarrow y=x$ (symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
4. for each positive integer n and n-ary function symbol f,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

(congruence)
5. for each positive integer n and n-ary predicate symbol p,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

(equivalence)
Congruence and Equivalence are axiom schemata. For example, Congruence for binary function f_{2} for $n=2$:

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(y_{1}, y_{2}\right)
$$

T_{E} is undecidable.
The quantifier-free fragment of T_{E} is decidable.
Very efficient algorithm.

Natural Numbers and Integers

Natural numbers $\mathbb{N}=\{0,1,2, \cdots\}$
Integers $\quad \mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$
Three variations:

- Peano arithmetic $T_{\text {PA }}$: natural numbers with addition and multiplication
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >

1. Peano Arithmetic $T_{P A}$ (first-order arithmetic)

$$
\Sigma_{\mathrm{PA}}:\{0,1,+, \cdot,=\}
$$

The axioms:

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \neg(x+1=0) \\
& \text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y \\
& \text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x \cdot F[x] \\
& \text { 4. } \forall x \cdot x+0=x \\
& \text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1 \\
& \text { 6. } \forall x \cdot x \cdot 0=0 \\
& \text { 7. } \forall x, y \cdot x \cdot(y+1)=x \cdot y+x
\end{aligned}
$$

Line 3 is an axiom schema.
Example: $3 x+5=2 y$ can be written using $\Sigma_{\text {PA }}$ as

$$
x+x+x+1+1+1+1+1=y+y
$$

We have $>$ and \geq since

$$
\begin{array}{lll}
3 x+5>2 y & \text { write as } & \exists z . z \neq 0 \wedge 3 x+5=2 y+z \\
3 x+5 \geq 2 y & \text { write as } & \exists z \cdot 3 x+5=2 y+z
\end{array}
$$

Example:

- Pythagorean Theorem is $T_{\text {PA }}$-valid

$$
\exists x, y, z \cdot x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x x+y y=z z
$$

- Fermat's Last Theorem is $T_{\text {PA }}$-invalid (Andrew Wiles, 1994)

$$
\exists n . n>2 \rightarrow \exists x, y, z . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x^{n}+y^{n}=z^{n}
$$

Remark (Gödel's first incompleteness theorem)
Peano arithmetic $T_{P A}$ does not capture true arithmetic:
There exist closed $\Sigma_{P A}$-formulae representing valid propositions of number theory that are not $T_{P A}$-valid.
The reason: $T_{P A}$ actually admits nonstandard interpretations
Satisfiability and validity in $T_{P A}$ is undecidable.
Restricted theory -- no multiplication
2. Presburger Arithmetic $T_{\mathbb{N}}$

$$
\Sigma_{\mathbb{N}}:\{0,1,+,=\} \quad \text { no multiplication! }
$$

Axioms $T_{\mathbb{N}}$:

$$
\begin{array}{lr}
\text { 1. } \forall x \cdot \neg(x+1=0) & \begin{array}{r}
\text { (zero) } \\
\text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y \\
\text { (successor) }
\end{array} \\
\text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x \cdot F[x] & \text { (induction) } \\
\text { 4. } \forall x \cdot x+0=x & \text { (plus zero) } \\
\text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1 & \text { (plus successor) }
\end{array}
$$

3 is an axiom schema.
$T_{\mathbb{N}}$-satisfiability and $T_{\mathbb{N}}$-validity are decidable (Presburger, 1929)
3. Theory of Integers $T_{\mathbb{Z}}$
$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,>\}$ where

- $\ldots,-2,-1,0,1,2, \ldots$ are constants
- ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions
(intended $2 \cdot x$ is $2 x$)
-,,$+-=,>$

$$
T_{\mathbb{Z}} \text { and } T_{\mathbb{N}} \text { have the same expressiveness }
$$

- Every $T_{\mathbb{Z}}$-formula can be reduced to $\Sigma_{\mathbb{N}}$-formula.

Example: Consider the $T_{\mathbb{Z}}$-formula
$F_{0}: \forall w, x . \exists y, z . x+2 y-z-13>-3 w+5$
Introduce two variables, v_{p} and v_{n} (range over the nonnegative integers) for each variable v (range over the integers) of F_{0}
F_{1} :

$$
\forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} .
$$

$$
\left(x_{p}-x_{n}\right)+2\left(y_{p}-y_{n}\right)-\left(z_{p}-z_{n}\right)-13>-3\left(w_{p}-w_{n}\right)+5
$$

Eliminate - by moving to the other side of $>$

$$
F_{2}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} .
$$

Eliminate >

$$
\begin{aligned}
& \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} . \exists u . \\
& \neg(u=0) \wedge \\
& F_{3}: \quad x_{p}+y_{p}+y_{p}+z_{n}+w_{p}+w_{p}+w_{p} \\
&= x_{n}+y_{n}+y_{n}+z_{p}+w_{n}+w_{n}+w_{n}+u \\
&+1+1+1+1+1+1+1+1+1 \\
&+1+1+1+1+1+1+1+1+1 .
\end{aligned}
$$

which is a $T_{\mathbb{N}}$-formula equivalent to F_{0}.

- Every $T_{\mathbb{N}}$-formula can be reduced to $\Sigma_{\mathbb{Z}}$-formula.

Example: To decide the $T_{\mathbb{N}}$-validity of the $T_{\mathbb{N}}$-formula

$$
\forall x . \exists y \cdot x=y+1
$$

decide the $T_{\mathbb{Z}}$-validity of the $T_{\mathbb{Z}}$-formula

$$
\forall x . x \geq 0 \rightarrow \exists y \cdot y \geq 0 \wedge x=y+1
$$

where $t_{1} \geq t_{2}$ expands to $t_{1}=t_{2} \vee t_{1}>t_{2}$

$$
T_{\mathbb{Z}} \text {-satisfiability and } T_{\mathbb{N}} \text {-validity is decidable }
$$

Rationals and Reals

$$
\Sigma=\{0,1,+,-, \cdot,=, \geq\}
$$

- Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$
x^{2}=2 \quad \Rightarrow \quad x= \pm \sqrt{2}
$$

- Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$
\underbrace{2 x}_{x+x}=7 \quad \Rightarrow \quad x=\frac{2}{7}
$$

Note: Strict inequality OK

$$
\forall x, y . \exists z . x+y>z
$$

rewrite as

$$
\forall x, y . \exists z . \neg(x+y=z) \wedge x+y \geq z
$$

1. Theory of Reals $T_{\mathbb{R}}$

$$
\Sigma_{\mathbb{R}}:\{0,1,+,-, \cdot,=, \geq\}
$$

with multiplication.
Example:

$$
\forall a, b, c . b^{2}-4 a c \geq 0 \leftrightarrow \exists x \cdot a x^{2}+b x+c=0
$$

is $T_{\mathbb{R}}$-valid.
$T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity
2. Theory of Rationals $T_{\mathbb{Q}}$

$$
\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}
$$

without multiplication.
Rational coefficients are simple to express in $T_{\mathbb{Q}}$
Example: Rewrite

$$
\frac{1}{2} x+\frac{2}{3} y \geq 4
$$

as the $\Sigma_{\mathbb{Q}}$-formula

$$
3 x+4 y \geq 24
$$

$T_{\mathbb{Q}}$ is decidable
Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Recursive Data Structures (RDS)

1. RDS theory of LISP-like lists, $T_{\text {cons }}$

$$
\Sigma_{\text {cons }}:\{\text { cons, car, cdr, atom, }=\}
$$

where

$$
\begin{array}{ll}
\operatorname{cons}(a, b) & \text {-- list constructed by concatenating } a \text { and } b \\
\operatorname{car}(x) & \text {-- left projector of } x: \operatorname{car}(\operatorname{cons}(a, b))=a \\
\operatorname{cdr}(x) & \text {-- right projector of } x: \operatorname{cdr}(\operatorname{cons}(a, b))=b \\
\operatorname{atom}(x) & \text {-- true iff } x \text { is a single-element list }
\end{array}
$$

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of =
2. Congruence axioms

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

3. Congruence axiom for atom

$$
\forall x, y . x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

4. $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
5. $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
6. $\forall x . \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
7. $\forall x, y$. $\neg \operatorname{atom}(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)
$T_{\text {cons }}$ is undecidable
Quantifier-free fragment of $T_{\text {cons }}$ is efficiently decidable
8. Lists + equality

$$
T_{\text {cons }}^{=}=T_{\mathrm{E}} \cup T_{\text {cons }}
$$

Signature: $\quad \Sigma_{\mathrm{E}} \cup \Sigma_{\text {cons }}$
(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_{E} and $T_{\text {cons }}$
$T_{\text {cons }}^{=}$is undecidable
Quantifier-free fragment of $T_{\text {cons }}^{=}$is efficiently decidable

Theory of Arrays

1. Theory of Arrays T_{A}

Signature

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

where

- $a[i]$ binary function -read array a at index i ("read $\left.(a, i)^{\prime \prime}\right)$
- $a\langle i \triangleleft v\rangle$ ternary function -write value v to index i of array a ("write (a, i, e) ")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
2. $\forall a, i, j . i=j \rightarrow a[i]=a[j]$ (array congruence)
3. $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$ (read-over-write 1)
4. $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$ (read-over-write 2)

Note: = is only defined for array elements

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

not T_{A}-valid, but

$$
F^{\prime}: a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j],
$$

is T_{A}-valid.
T_{A} is undecidable
Quantifier-free fragment of T_{A} is decidable

2. Theory of Arrays $T_{\mathrm{A}}^{=}$(with extensionality)

Signature and axioms of $T_{\mathrm{A}}^{=}$are the same as T_{A}, with one additional axiom

$$
\forall a, b .(\forall i . a[i]=b[i]) \leftrightarrow a=b \quad \text { (extensionality) }
$$

Example:

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

is $T_{\mathrm{A}}^{=}$-valid.
$T_{\mathrm{A}}^{=}$is undecidable
Quantifier-free fragment of $T_{\mathrm{A}}^{=}$is decidable

