Verification

Lecture 2

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Transition systems

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function
S and $A c t$ are either finite or countably infinite Notation: $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \longrightarrow$

REVIEW: Modeling sequential circuits

Transition system representation of a simple hardware circuit Input variable x, output variable y, and register r
Output function $\neg(x \oplus r)$ and register evaluation function $x \vee r$

Modeling data-dependent systems

The beverage vending machine revisited:
"Abstract" transitions:

$$
\begin{gathered}
\text { start } \xrightarrow{\text { true:coin }} \text { select } \begin{array}{c}
\text { and } \quad \text { start } \xrightarrow{\text { true:refill }} \text { start } \\
\text { select } \xrightarrow{\text { nsprite }>0: \text { sget }} \text { start } \quad \text { and } \text { select } \xrightarrow{\text { nbeer }>0: \text { bget }} \text { start } \\
\text { select } \xrightarrow{\text { nsprite }=0 \wedge \text { nbeer }=0: \text { ret_coin }} \text { start }
\end{array} \text { }
\end{gathered}
$$

Action	Effect on variables
coin	
ret_coin	
sget	nsprite $:=$ nsprite - 1
bget	nbeer $:=$ nbeer -1
refill	nsprite $:=$ max; nbeer $:=$ max

Some preliminaries

- typed variables with a valuation that assigns values to variables
- e.g., $\eta(x)=17$ and $\eta(y)=-2$
- the set of Boolean conditions over Var
- propositional logic formulas whose propositions are of the form " $\bar{x} \in \overline{D^{\prime}}$ "
- $(-3<x \leq 5) \wedge(y=$ green $) \wedge\left(x \leq 2 \cdot x^{\prime}\right)$
- effect of the actions is formalized by means of a mapping:

$$
\text { Effect : Act } \times \operatorname{Eval}(\text { Var }) \rightarrow \operatorname{Eval}(\text { Var })
$$

- e.g., $\alpha \equiv x:=y+5$ and evaluation $\eta(x)=17$ and $\eta(y)=-2$
- $\operatorname{Effect}(\alpha, \eta)(x)=\eta(y)+5=3$, and $\operatorname{Effect}(\alpha, \eta)(y)=\eta(y)=-2$

Program graphs

A program graph $P G$ over set Var of typed variables is a tuple

$$
\left(\text { Loc, Act, Effect, } \longrightarrow, \text { Loc }_{0}, g_{0}\right) \quad \text { where }
$$

- Loc is a set of locations with initial locations $L o c_{0} \subseteq L o c$
- Act is a set of actions
- Effect : Act \times Eval(Var) \rightarrow Eval(Var) is the effect function
- $\longrightarrow \subseteq L o c \times(\underbrace{\text { Cond(Var) }}_{\text {Boolean conditions over Var }} \times A c t) \times L o c$, transition relation
- $g_{0} \in \operatorname{Cond}($ Var $)$ is the initial condition.

Notation: $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ denotes $\left(\ell, g, \alpha, \ell^{\prime}\right) \in \longrightarrow$

Beverage vending machine

- Loc $=\{$ start, select $\}$ with Loc $_{0}=\{$ start $\}$
- Act $=\{$ bget, sget, coin, ret_coin, refill $\}$
- Var $=\{$ nsprite, nbeer $\}$ with domain $\{0,1, \ldots$, max $\}$
- Effect:

Effect $($ coin, $\eta)$	$=\eta$
Effect $($ ret_coin, $\eta)$	$=\eta$
Effect $($ sget,$\eta)$	$=\eta[$ nsprite $:=$ nsprite-1]
Effect $($ bget, $\eta)$	$=\eta[$ nbeer $:=$ nbeer- 1$]$
Effect $($ refill,,$\eta)$	$=\eta[$ nsprite $:=$ max, nbeer $:=$ max $]$

- $g_{0}=($ nsprite $=\max \wedge$ nbeer $=\max)$

From program graphs to transition systems

- Basic strategy: unfolding
- state $=$ location (current control) $\ell+$ data valuation η
- initial state $=$ initial location satisfying the initial condition g_{0}
- Propositions and labeling
- propositions: " ℓ " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
- $\langle\ell, \eta\rangle$ is labeled with " ℓ " and all conditions that hold in η
$-\ell \xrightarrow{g: \alpha} \ell^{\prime}$ and g holds in η then $\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle$

Structured operational semantics

- The notation $\frac{\text { premise }}{\text { conclusion }}$ means:

If the premise holds, then the conclusion holds

- Such "if . . ., then ..." propositions are also called inference rules
- If the premise is a tautology, it may be omitted (as well as the "solid line")
- In the latter case, the rule is also called an axiom

Transition systems for program graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(L o c, \text { Act }, \text { Effect }, \longrightarrow, \text { Loc }_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \longrightarrow, I, A P, L)$ where

- $S=$ Loc $\times \operatorname{Eval}($ Var $)$
- $\longrightarrow \subseteq S \times A c t \times S$ is defined by the rule:

$$
\frac{\ell \xrightarrow{g: \alpha} \ell^{\prime} \wedge \quad \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

- $I=\left\{\langle\ell, \eta\rangle \mid \ell \in L_{0} c_{0}, \eta \vDash g_{0}\right\}$
- $A P=L o c \cup \operatorname{Cond}($ Var $)$ and

$$
L(\langle\ell, \eta\rangle)=\{\ell\} \cup\{g \in \operatorname{Cond}(\text { Var }) \mid \eta \vDash g\} .
$$

Transition systems $=$ finite automata

As opposed to finite automata, in a transition system:

- there are no accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour

Interleaving

- Abstract from decomposition of system in components
- Actions of independent components are merged or "interleaved"
- a single processor is available
- on which the actions of the processes are interleaved
- No assumptions are made on the order of processes
- possible orders for non-terminating independent processes P and Q :

$$
\begin{array}{llllllllll}
P & Q & P & Q & P & Q & Q & Q & P & \ldots \\
P & P & Q & P & P & Q & P & P & Q & \ldots \\
P & Q & P & P & Q & P & P & P & Q & \ldots
\end{array}
$$

- assumption: there is a scheduler with an a priori unknown strategy

Interleaving

- Justification for interleaving:
the effect of concurrently executed, independent actions α and β
equals the effect when α and β are successively executed in arbitrary order
- Symbolically this is stated as:

$$
\operatorname{Effect}(\alpha \| \mid \beta, \eta)=\operatorname{Effect}((\alpha ; \beta)+(\beta ; \alpha), \eta)
$$

- ||| stands for the (binary) interleaving operator
- ";" stands for sequential execution, and " + " for non-deterministic choice

Interleaving

$$
\underbrace{x:=x+1}_{=\alpha}\| \| \underbrace{y:=y-2}_{=\beta}
$$

Interleaving of transition systems

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right) i=1,2$, be two transition systems.
Transition system

$$
T S_{1} \| \mid T S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \uplus A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and the transition relation \rightarrow is defined by the rules:

$$
\frac{s_{1} \xrightarrow{\alpha} 1 s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \text { and } \frac{s_{2} \xrightarrow{\alpha} 2 s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

Interleaving of program graphs

For program graphs $P G_{1}$ (on $V a r_{1}$) and $P G_{2}$ (on $V a r_{2}$) without shared variables, i.e., $\operatorname{Var}_{1} \cap$ Var $_{2}=\varnothing$,

$$
T S\left(P G_{1}\right)\left\|\| T S\left(P G_{2}\right)\right.
$$

faithfully describes the concurrent behavior of $P G_{1}$ and $P G_{2}$

Shared variable communication

$$
\underbrace{x:=2 \cdot x}_{\text {action } \alpha}| | \mid \underbrace{x:=x+1}_{\text {action } \beta} \text { with initially } x=3
$$

$$
\langle x=6, x=4\rangle \text { is an inconsistent state! }
$$

\Rightarrow no faithful model of the concurrent execution of α and β
Idea: first interleave, then unfold

Interleaving of program graphs

Let $P G_{i}=\left(\right.$ Loc $_{i}$, Act $_{i}$, Effect $_{i}, \longrightarrow{ }_{i}$, Loc $\left._{0, i}, g_{0, i}\right)$ over variables Var $_{i}$.
Program graph $P G_{1} \| \mid P G_{2}$ over $\operatorname{Var}_{1} \cup \operatorname{Var}_{2}$ is defined by:

$$
\left({L o c_{1}} \times \text { Loc }_{2}, \text { Act }_{1} \uplus A c t_{2}, \text { Effect }, \longrightarrow, L o c_{0,1} \times L o c_{0,2}, g_{0,1} \wedge g_{0,2}\right)
$$

where \longrightarrow is defined by the inference rules:

$$
\frac{\ell_{1} \xrightarrow{g: \alpha} 1 \ell_{1}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \xrightarrow{g: \alpha}\left\langle\ell_{1}^{\prime}, \ell_{2}\right\rangle} \text { and } \frac{\ell_{2} \xrightarrow{g: \alpha} 2 \ell_{2}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \xrightarrow{g:: ~}\left\langle\ell_{1}, \ell_{2}^{\prime}\right\rangle}
$$

and $\operatorname{Effect}(\alpha, \eta)=\operatorname{Effect}_{i}(\alpha, \eta)$ if $\alpha \in \operatorname{Act}_{i}$.

Example

$$
\underbrace{x:=2 \cdot x}_{\text {action } \alpha} \mid \| \underbrace{x:=x+1}_{\text {action } \beta} \text { with initially } x=3
$$

note that $T S\left(P G_{1}\right) \| \mid T S\left(P G_{2}\right) \neq T S\left(P G_{1} \| P G_{2}\right)$

On atomicity

$$
\underbrace{x:=x+1 ; y:=2 x+1 ; z:=y \operatorname{div} x}_{\text {non-atomic }}\| \| x:=0
$$

Possible execution fragment:

$$
\langle x=11\rangle \xrightarrow{x:=x+1}\langle x=12\rangle \xrightarrow{y:=2 x+1}\langle x=12\rangle \xrightarrow{x:=0}\langle x=0\rangle \xrightarrow{z:=y / x} \dagger \ldots
$$

$$
\underbrace{\langle x:=x+1 ; y:=2 x+1 ; z:=y \operatorname{div} x\rangle}_{\text {atomic }} \| \mid x:=0
$$

Either the left process or the right process is completed first:

$$
\langle x=11\rangle \xrightarrow{x:=x+1}\langle x=12\rangle \xrightarrow{y:=2 x+1}\langle x=12\rangle \xrightarrow{z:=y / x}\langle x=12\rangle \xrightarrow{x:=0}\langle x=0\rangle
$$

Peterson's mutual exclusion algorithm

$P_{1} \quad$ loop forever

!
$\left\langle b_{1}:=\right.$ true; $\left.x:=2\right\rangle ;$
wait until $\left(x=1 \vee \neg b_{2}\right)$
do critical section od
b_{1} := false
!
end loop
(* non-critical actions *)
(* request *)
(* release *)
(* non-critical actions *)
b_{i} is true if and only if process P_{i} is waiting or in critical section if both processes want to enter their critical section, x decides who gets

Banking system

Person Left behaves as follows:

Person Right behaves as follows:

Can we guarantee that only one person at a time has access to the bank account?

Is the banking system safe?

Manually inspect whether two may have access to the account simultaneously: No

Banking system with non-atomic assignment

Person Left behaves as follows:

			while true $\{$	
	$\ldots \ldots$			
$n c:$	$x=2 ;$			
$r g:$	$b_{1}=$ true;			
$w t:$	wait until $\left(x==1 \\| \neg b_{2}\right)\{$			
$c s:$	\ldots @account $\ldots\}$			
	$b_{1}=$ false;			
	$\ldots \ldots$			
	$\}$			

Person Right behaves as follows:

On atomicity again

Possible state sequence:

$$
\left.\begin{array}{llll}
\left\langle n c_{1},\right. & n c_{2}, & x=1, & b_{1}=\text { false },
\end{array} b_{2}=\text { false }\right\rangle, \begin{array}{lll}
\left\langle n c_{1},\right. & r q_{2}, & x=1, \\
b_{1}=\text { false }, & \left.b_{2}=\text { false }\right\rangle \\
\left\langle r q_{1},\right. & r q_{2}, & x=2, \\
b_{1}=\text { false }, & \left.b_{2}=\text { false }\right\rangle \\
\left\langle w t_{1},\right. & r q_{2}, & x=2, \\
b_{1}=\text { true }, & \left.b_{2}=\text { false }\right\rangle \\
\left\langle c s_{1},\right. & r q_{2}, & x=2, \\
b_{1}=\text { true }, & \left.b_{2}=\text { false }\right\rangle \\
\left\langle c s_{1},\right. & w t_{2}, & x=2, \\
\left\langle b_{1}=\text { true },\right. & \left.b_{2}=\text { true }\right\rangle \\
\left\langle c s_{1},\right. & c s_{2}, & x=2, \\
b_{1}=\text { true }, & \left.b_{2}=\text { true }\right\rangle!
\end{array}
$$

Parallelism and handshaking

- Concurrent processes run truly in parallel
- To obtain cooperation, some interaction mechanism is needed
- If processes are distributed there is no shared memory
\Rightarrow Message passing
- synchronous message passing (= handshaking)
- asynchronous message passing (= channel communication)

Handshaking

- Concurrent processes interact by synchronous message passing
- processes execute synchronized actions together
- that is, in interaction both processes need to participate at the same time
" the interacting processes "shake hands"
- Abstract from information that is exchanged
- His a set of handshake actions
- actions outside H are independent and are interleaved
- actions in H need to be synchronized

Handshaking

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right), i=1,2$ and $H \subseteq A c t_{1} \cap A c t_{2}$.

$$
T S_{1} \|_{H} T S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \cup A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and with \rightarrow defined by:

- interleaving for $\alpha \notin H$:

$$
\frac{s_{1} \xrightarrow{\alpha} 1 s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \quad \frac{s_{2} \xrightarrow{\alpha} 2 s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

- handshaking for $\alpha \in H$:

$$
\frac{s_{1} \xrightarrow{\alpha}_{1} s_{1}^{\prime} \wedge s_{2} \xrightarrow{\alpha}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
$$

note that $T S_{1}\left\|_{H} T S_{2}=T S_{2}\right\|_{H} T S_{1}$ but $\left(T S_{1} \|_{H_{1}} T S_{2}\right)\left\|_{H_{2}} T S_{3} \neq T S_{1}\right\|_{H_{1}}\left(T S_{2} \|_{H_{2}} T S_{3}\right)$

A booking system

BCR || BP \|Printer

$\|$ is a shorthand for $\|_{H}$ with $H=A c t_{1} \cap A c t_{2}$

The parallel composition

Pairwise handshaking

$T S_{1}\|\ldots\| T S_{n}$ for $H_{i, j}=A c t_{i} \cap A c t_{j}$ with $H_{i, j} \cap A c t_{k}=\varnothing$ for $k \notin\{i, j\}$
State space of $T S_{1}\|\ldots\| T S_{n}$ is the Cartesian product of those of $T S_{i}$

- for $\alpha \in A c t_{i} \backslash\left(\underset{\substack{0<i<n \\ i \neq j}}{ } H_{i, j}\right)$ and $0<i \leq n$:

$$
\frac{s_{i} \xrightarrow{\alpha} s_{i}^{\prime}}{\left\langle s_{1}, \ldots, s_{i}, \ldots, s_{n}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, \ldots, s_{i}^{\prime}, \ldots s_{n}\right\rangle}
$$

- for $\alpha \in H_{i, j}$ and $0<i<j \leq n:$

$$
\frac{s_{i} \xrightarrow{\alpha} i s_{i}^{\prime} \wedge s_{j} \xrightarrow{\alpha}_{j} s_{j}^{\prime}}{\left\langle s_{1}, \ldots, s_{i}, \ldots, s_{j}, \ldots, s_{n}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, \ldots, s_{i}^{\prime}, \ldots, s_{j}^{\prime}, \ldots, s_{n}\right\rangle}
$$

Synchronous parallelism

$$
\text { Let } T S_{i}=\left(S_{i}, A c t, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right) \text { and } A c t \times A c t \rightarrow A c t, \quad(\alpha, \beta) \rightarrow \alpha * \beta
$$

$$
T S_{1} \otimes T S_{2}=\left(S_{1} \times S_{2}, A c t, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)
$$

with L as defined before and \rightarrow is defined by the following rule:

$$
\frac{s_{1} \xrightarrow{\alpha}{ }_{1} s_{1}^{\prime} \wedge s_{2} \xrightarrow{\beta}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha * \beta}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
$$

$T S_{1}:$

$T S_{2}:$

$T S_{1} \otimes T S_{2}:$

Channels

- Processes communicate via channels ($c \in$ Chan)
- Channels are first-in, first-out buffers
- Channels are types (wrt. their content --- dom(c))
- Channels buffer messages (of appropriate type)
- Channel capacity = maximum \# messages that can be stored
- if $c a p(c) \in \mathbb{N}$ then c is a channel with finite capacity
- if $\operatorname{cap}(c)=\infty$ then c has an infinite capacity
- if $c a p(c)>0$, there is some "delay" between sending and receipt
- if $\operatorname{cap}(c)=0$, then communication via c amounts to handshaking

Channels

- Process $P_{i}=$ program graph $P G_{i}+\underline{\text { communication actions }}$
$c!v$ transmit the value v along channel c
$c ? x \quad$ receive a message via channel c and assign it to variable x
- Comm =
$\{c!v, c ? x \mid c \in \operatorname{Chan}, v \in \operatorname{dom}(c), x \in \operatorname{Var} . \operatorname{dom}(x) \supseteq \operatorname{dom}(c)\}$
- Sending and receiving a message
- c!v puts the value v at the rear of the buffer c (if c is not full)
- c ? x retrieves the front element of the buffer and assigns it to x (if c is not empty)
- if $\operatorname{cap}(c)=0$, channel c has no buffer
- if cap $(c)=0$, sending and receiving takes place simultaneously this is called synchronous message passing or handshaking
- if $\operatorname{cap}(c)>0$, sending and receiving can never take place simultaneously
this is called asynchronous message passing

Channel systems

A program graph over (Var, Chan) is a tuple

$$
P G=\left(L o c, \text { Act, Effect }, \rightarrow, L o c_{0}, g_{0}\right)
$$

where

$$
\rightarrow \subseteq \operatorname{Loc} \times(\text { Cond }(\text { Var }) \times A c t) \times \operatorname{Loc} \cup \underbrace{\operatorname{Loc} \times \text { Comm } \times \operatorname{LoC}}_{\text {communication actions }}
$$

A channel system CS over ($\cup_{0<i \leq n}$ Var $_{i}$, Chan $)$:

$$
C S=\left[P G_{1}|\ldots| P G_{n}\right]
$$

with program graphs $P G_{i}$ over (Var $_{i}$, Chan)

Communication actions

- Handshaking
- if $\operatorname{cap}(c)=0$, then process P_{i} can perform $\ell_{i} \xrightarrow{c!v} \ell_{i}^{\prime}$ only
- . . if P_{j}, say, can perform $\ell_{j} \xrightarrow{c ? x} \ell_{j}^{\prime}$
- the effect corresponds to the (atomic) distributed assignment $x:=v$.
- Asynchronous message passing
- if $\operatorname{cap}(c)>0$, then process P_{i} can perform $\ell_{i} \xrightarrow{c!v} \ell_{i}^{\prime}$
- ... if and only if less than cap(c) messages are stored in c
- P_{j} may perform $\ell_{j} \xrightarrow{c ? v} \ell_{j}^{\prime}$ if and only if the buffer of c is not empty
- then the first element v of the buffer is extracted and assigned to x (atomically)

	executable if \ldots	effect
$c!v$	c is not "full"	Enqueue (c, v)
$c ? x$	c is not empty	$\langle x:=$ Front $(c) ;$ Dequeue $(c)\rangle ;$

The alternating bit protocol: sender

The alternating bit protocol: receiver

Channel evaluations

- A channel evaluation ξ is
- a mapping from channel $c \in$ Chan onto a sequence $\xi(c) \in \operatorname{dom}(c)^{*}$ such that
- current length cannot exceed the capacity of c : $\operatorname{len}(\xi(c)) \leq \operatorname{cap}(c)$
- $\xi(c)=v_{1} v_{2} \ldots v_{k}(\operatorname{cap}(c) \geq k)$ denotes v_{1} is at front of buffer etc.
- $\xi\left[c:=v_{1} \ldots v_{k}\right]$ denotes the channel evaluation

$$
\xi\left[c:=v_{1} \ldots v_{k}\right]\left(c^{\prime}\right)= \begin{cases}\xi\left(c^{\prime}\right) & \text { if } c \neq c^{\prime} \\ v_{1} \ldots v_{k} & \text { if } c=c^{\prime} .\end{cases}
$$

- Initial channel evaluation ξ_{0} equals $\xi_{0}(c)=\varepsilon$ for any c

Transition system semantics of a channel system

Let $C S=\left[P G_{1}|\ldots| P G_{n}\right]$ be a channel system over (Chan, Var) with

$$
P G_{i}=\left(\text { Loc }_{i}, A c t_{i}, \text { Effect }_{i}, \sim_{i}, \text { Loc }_{0, i}, g_{0, i}\right), \quad \text { for } 0<i \leq n
$$

$T S(C S)$ is the transition system $(S, A c t, \rightarrow, I, A P, L)$ where:

- $S=\left(\operatorname{Loc}_{1} \times \cdots \times\right.$ Loc $\left._{n}\right) \times \operatorname{Eval}($ Var $) \times \operatorname{Eval}($ Chan $)$
- Act $=\left(\biguplus_{0<i \leq n} A c t_{i}\right) \uplus\{\tau\}$
- \rightarrow is defined by the inference rules on the next slides
- $I=\left\{\left\langle\ell_{1}, \ldots, \ell_{n}, \eta, \xi_{0}\right\rangle \mid \forall i .\left(\ell_{i} \in L o c_{0, i} \& \eta \vDash g_{0, i}\right) \& \forall c . \xi_{0}(c)=\varepsilon\right\}$
- $A P=\biguplus_{0<i \leq n} L o c_{i} \uplus C o n d($ Var $)$
- $L\left(\left\langle\ell_{1}, \ldots, \ell_{n}, \eta, \xi\right\rangle\right)=\left\{\ell_{1}, \ldots, \ell_{n}\right\} \cup\{g \in \operatorname{Cond}($ Var $) \mid \eta \vDash g\}$

Inference rules (I)

- Interleaving for $\alpha \in$ Act $_{i}$:

$$
\frac{\ell_{i} \xrightarrow{g: \alpha} \ell_{i}^{\prime} \wedge \quad \eta \vDash g}{\left\langle\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{n}, \eta, \xi\right\rangle \xrightarrow{\alpha}\left\langle\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{n}, \eta^{\prime}, \xi\right\rangle}
$$

where $\eta^{\prime}=\operatorname{Effect}(\alpha, \eta)$

- Synchronous message passing over $c \in$ Chan, $\operatorname{cap}(c)=0$:

$$
\begin{aligned}
& \frac{\ell_{i} \xrightarrow{c ? x} \ell_{i}^{\prime} \wedge \ell_{j} \xrightarrow{c!v} \ell_{j}^{\prime} \wedge i \neq j}{\left\langle\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{j}, \ldots, \ell_{n}, \eta, \xi\right\rangle \xrightarrow{\tau}\left\langle\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{j}^{\prime}, \ldots, \ell_{n}, \eta^{\prime}, \xi\right\rangle} \\
& \text { where } \eta^{\prime}=\eta[x:=v] .
\end{aligned}
$$

Inference rules (II)

- Asynchronous message passing for $c \in$ Chan, $\operatorname{cap}(c)>0$:
- receive a value along channel c and assign it to variable x :

$$
\frac{\ell_{i} \stackrel{c ? x}{\longrightarrow} \ell_{i}^{\prime} \wedge \operatorname{len}(\xi(c))=k>0 \wedge \xi(c)=v_{1} \ldots v_{k}}{\left\langle\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{n}, \eta, \xi\right\rangle \xrightarrow{\tau}\left\langle\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{n}, \eta^{\prime}, \xi^{\prime}\right\rangle}
$$

where $\eta^{\prime}=\eta\left[x:=v_{1}\right]$ and $\xi^{\prime}=\xi\left[c:=v_{2} \ldots v_{k}\right]$.

- transmit value $v \in \operatorname{dom}(c)$ over channel $c:$

$$
\frac{\ell_{i} \xrightarrow{c!v} \ell_{i}^{\prime} \wedge \operatorname{len}(\xi(c))=k<\operatorname{cap}(c) \wedge \xi(c)=v_{1} \ldots v_{k}}{\left\langle\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{n}, \eta, \xi\right\rangle \xrightarrow{\tau}\left\langle\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{n}, \eta, \xi^{\prime}\right\rangle}
$$

where $\xi^{\prime}=\xi\left[c:=v_{1} v_{2} \ldots v_{k} v\right]$.

Handling unexpected messages

sender S	timer	receiver R	channel c	channeld	event
snd_msg(0)	off	wait(0)	\varnothing	\varnothing	
st_tmr (0)	off	wait(0)	$\langle m, 0\rangle$	\varnothing	message with bit 0 transmitted
wait(0)	on	wait(0)	$\langle m, 0\rangle$	\varnothing	
snd_msg(0)	off	wait(0)	$\langle m, 0\rangle$	\varnothing	timeout
st_tmr (0)	off	wait(0)	$\langle m, 0\rangle\langle m, 0\rangle$	\varnothing	retransmission
st_tmr (0)	off	pr_msg(0)	$\langle m, 0\rangle$	\varnothing	receiver reads first message
st_tmr (0)	off	snd_ack(0)	$\langle m, 0\rangle$	\varnothing	
st_tmr (0)	off	wait(1)	$\langle m, 0\rangle$	0	receiver changes into mode-1
st_tmr (0)	off	pr_msg(1)	\varnothing	0	receiver reads retransmission
st_tmr (0)	off	wait(1)	\varnothing	0	and ignores it
.	!	\vdots	:	!	

nanoPromela

- Promela (Process Meta Language): modeling language for SPIN
- most widely used model checker
- developed by Gerard Holzmann (Bell Labs, NASA JPL)
- ACM Software Award 2002
- nanoPromela is the core of Promela
- shared variables and channel-based communication
- formal semantics of a Promela model is a channel system
- processes are defined by means of a guarded command language
- No actions, statements describe effect of actions

nanoPromela

nanoPromela-program $\overline{\mathcal{P}}=\left[\mathcal{P}_{1}|\ldots| \mathcal{P}_{n}\right]$ with \mathcal{P}_{i} processes A process is specified by a statement:
$\begin{aligned} \text { stmt } \quad:= & \operatorname{skip}|x:=\operatorname{expr}| c ? x \mid c!\text { expr } \mid \\ & \left.\operatorname{stmt}_{1} ; \text { stmt }_{2} \mid \text { atomic\{assignments }\right\} \mid\end{aligned}$
if $\quad:: g_{1} \Rightarrow \operatorname{stmt}_{1} \quad \ldots \quad:: g_{n} \Rightarrow \operatorname{stmt}_{n} \quad \mathbf{f i}$
do $:: g_{1} \Rightarrow \operatorname{stmt}_{1} \quad \ldots \quad:: g_{n} \Rightarrow \operatorname{stmt}_{n} \quad$ od
assignments $::=x_{1}:=\operatorname{expr}_{1} ; x_{2}:=\operatorname{expr}_{2} ; \ldots ; x_{m}:=\operatorname{expr}_{m}$
x is a variable in Var, expr an expression and c a channel, g_{i} a guard assume the Promela specification is type-consistent

Conditional statements

$$
\text { if }:: g_{1} \Rightarrow \operatorname{stmt}_{1} \ldots:: g_{n} \Rightarrow \operatorname{stmt}_{n} \mathbf{f i}
$$

- Nondeterministic choice between statements stmt ${ }_{i}$ for which g_{i} holds
- Test-and-set semantics: (deviation from Promela)
- guard evaluation + selection of enabled command + execution first atomic step of selected statement is all performed atomically
- The if--fi--command blocks if no guard holds
- parallel processes may unblock a process by changing shared variables
- e.g., when $y=0$, if :: $y>0 \Rightarrow x:=42$ fi waits until y exceeds 0
- Standard abbreviations:
- if g then stmt_{1} else $\mathrm{stmt}_{2} \mathbf{f i} \equiv$ if $:: g \Rightarrow \operatorname{stmt}_{1}:: \neg g \Rightarrow \operatorname{stmt}_{2} \mathbf{f i}$
- if g then $\operatorname{stmt}_{1} \mathbf{f i} \equiv$ if $:: g \Rightarrow \operatorname{stmt}_{1}:: \neg g \Rightarrow$ skip $\mathbf{f i}$

Iteration statements

$$
\text { do }:: g_{1} \Rightarrow \operatorname{stmt}_{1} \ldots:: g_{n} \Rightarrow \operatorname{stmt}_{n} \text { od }
$$

- Iterative execution of nondeterministic choice among $g_{i} \Rightarrow \mathrm{stmt}_{i}$
- where guard g_{i} holds in the current state
- No blocking if all guards are violated; instead, loop is aborted
- do $:: g \Rightarrow$ stmt od \equiv while g do stmt od
- No break-statements to abort a loop (deviation from Promela)

Peterson's algorithm

The nanoPromela-code of process \mathcal{P}_{1} is given by the statement:

$$
\begin{aligned}
& \text { do }:: \text { true } \Rightarrow \text { skip; } \\
& \text { atomic }\left\{b_{1}:=\text { true; } x:=2\right\} ; \\
& \text { if }::(x=1) \vee \neg b_{2} \Rightarrow \text { crit }_{1}:=\text { true fi } \\
& \text { atomic }\left\{\text { crit }_{1}:=\text { false; } b_{1}:=\text { false }\right\} \\
& \text { od }
\end{aligned}
$$

Beverage vending machine

The following nanoPromela program describes its behaviour:

$$
\begin{aligned}
& \text { do :: true } \Rightarrow \\
& \text { skip; } \\
& \text { if } \quad:: \text { nsprite }>0 \Rightarrow \text { nsprite }:=n s p r i t e ~-~ 1 ~ \\
& \text { :: nbeer }>0 \Rightarrow \text { nbeer }:=\text { nbeer }-1 \\
& \text { :: nsprite }=\text { nbeer }=0 \Rightarrow \text { skip } \\
& :: \quad \text { true } \Rightarrow \text { atomic }\{\text { nbeer := max; nsprite }:=\text { max }\}
\end{aligned}
$$

