Verification

Lecture 2

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Transition systems

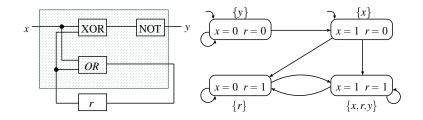
A <u>transition system</u> *TS* is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times Act \times S$ is a transition relation
- I ⊆ S is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

```
Notation: s \xrightarrow{\alpha} s' instead of (s, \alpha, s') \in \longrightarrow
```

REVIEW: Modeling sequential circuits



Transition system representation of a simple hardware circuit Input variable x, output variable y, and register r Output function $\neg(x \oplus r)$ and register evaluation function $x \lor r$

Modeling data-dependent systems

The beverage vending machine revisited:

"Abstract" transitions:

 $start \xrightarrow{true:coin}$ select and $start \xrightarrow{true:refill}$ start select $\xrightarrow{nsprite>0:sget}$ start and $select \xrightarrow{nbeer>0:bget}$ start $select \xrightarrow{nsprite=0 \land nbeer=0:ret_coin}$ start

Action	Effect on variables	
coin		
ret_coin		
sget	nsprite := nsprite – 1	
bget	nbeer := nbeer – 1	
refill	nsprite := max; nbeer := max	

Some preliminaries

- typed variables with a valuation that assigns values to variables
 - e.g., $\eta(x) = 17$ and $\eta(y) = -2$
- the set of Boolean conditions over Var
 - ▶ propositional logic formulas whose propositions are of the form " $\overline{x} \in \overline{D}$ "
 - $(-3 < x \le 5) \land (y = green) \land (x \le 2 \cdot x')$
- effect of the actions is formalized by means of a mapping:

Effect : $Act \times Eval(Var) \rightarrow Eval(Var)$

- e.g., $\alpha \equiv x := y+5$ and evaluation $\eta(x) = 17$ and $\eta(y) = -2$
- Effect $(\alpha, \eta)(x) = \eta(y) + 5 = 3$, and Effect $(\alpha, \eta)(y) = \eta(y) = -2$

Program graphs

A program graph PG over set Var of typed variables is a tuple

 $(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$ where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- *Effect* : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the <u>effect</u> function
- $\blacktriangleright \longrightarrow \subseteq Loc \times (\underbrace{Cond(Var)}_{\text{Boolean conditions over Var}} \times Act) \times Loc, \text{ transition relation}$
- $g_0 \in Cond(Var)$ is the initial <u>condition</u>.

Notation: $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Beverage vending machine

- $Loc = \{ start, select \} with Loc_0 = \{ start \}$
- Act = { bget, sget, coin, ret_coin, refill }
- Var = { nsprite, nbeer } with domain $\{0, 1, \dots, max \}$
- Effect:

• $g_0 = (nsprite = max \land nbeer = max)$

From program graphs to transition systems

- Basic strategy: <u>unfolding</u>
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0
- Propositions and labeling
 - ▶ propositions: " ℓ " and " $x \in D$ " for $D \subseteq dom(x)$
 - $\langle \ell,\eta \rangle$ is labeled with " ℓ " and all conditions that hold in η
- $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', Effect(\alpha, \eta) \rangle$

Structured operational semantics

► The notation <u>premise</u> means:

If the premise holds, then the conclusion holds

- Such "if ..., then ..." propositions are also called inference rules
- If the premise is a tautology, it may be omitted (as well as the "solid line")
- In the latter case, the rule is also called an <u>axiom</u>

Transition systems for program graphs

The transition system *TS*(*PG*) of program graph

$$PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$

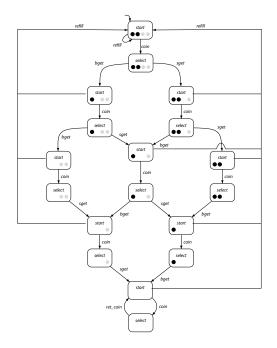
over set Var of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- \longrightarrow \subseteq *S* × *Act* × *S* is defined by the rule:

$$\frac{\ell \xrightarrow{g:\alpha}}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', Effect(\alpha, \eta) \rangle}$$

•
$$I = \{ \langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \vDash g_0 \}$$

• $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$



Transition systems *≠* finite automata

As opposed to finite automata, in a transition system:

- there are <u>no</u> accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour

Interleaving

- Abstract from decomposition of system in components
- Actions of independent components are merged or "interleaved"
 - a single processor is available
 - on which the actions of the processes are interleaved
- No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes P and Q:

Ρ	Q	Ρ	Q	Ρ	Q	Q	Q	Ρ	
Ρ	Ρ	Q	Ρ	Ρ	Q	Ρ	Ρ	Q	
Ρ	Q	Ρ	Ρ	Q	Ρ	Ρ	Ρ	Q	

 assumption: there is a scheduler with an a priori <u>unknown</u> strategy

Interleaving

Justification for interleaving:

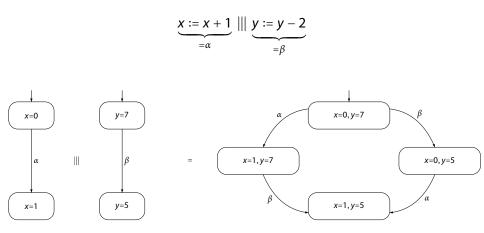
the effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order

Symbolically this is stated as:

 $Effect(\alpha ||| \beta, \eta) = Effect((\alpha; \beta) + (\beta; \alpha), \eta)$

- Ill stands for the (binary) interleaving operator
- ";" stands for sequential execution, and "+" for non-deterministic choice

Interleaving



Interleaving of transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ i=1, 2, be two transition systems.

Transition system

$$TS_1 \parallel TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \rightarrow is defined by the rules:

$$\frac{\underset{\langle s_1, s_2 \rangle}{\xrightarrow{\alpha}} \underset{\langle s_1', s_2 \rangle}{\xrightarrow{\alpha}} \text{and} \quad \frac{\underset{s_2}{\xrightarrow{\alpha}} \underset{\langle s_1, s_2 \rangle}{\xrightarrow{s_2'}} \underset{\langle s_1, s_2 \rangle}{\xrightarrow{\alpha}} \underset{\langle s_1, s_2' \rangle}{\xrightarrow{s_1'}}$$

Interleaving of program graphs

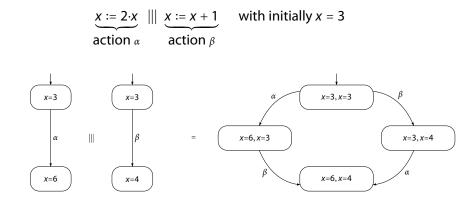
For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) without shared variables, i.e., $Var_1 \cap Var_2 = \emptyset$,

 $\textit{TS}(\textit{PG}_1) \parallel \textit{TS}(\textit{PG}_2)$

faithfully describes the concurrent behavior of PG1 and PG2

what if they have variables in common?

Shared variable communication



 $\langle x=6, x=4 \rangle$ is an inconsistent state!

⇒ no faithful model of the concurrent execution of α and β Idea: first interleave, then unfold

Interleaving of program graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .

Program graph $PG_1 \parallel PG_2$ over $Var_1 \cup Var_2$ is defined by:

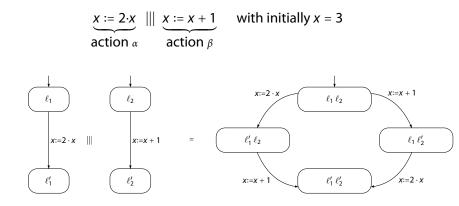
 $(Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \longrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2})$

where \rightarrow is defined by the inference rules:

$$\frac{\ell_1 \xrightarrow{g:\alpha}_1 \ell'_1}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{\longrightarrow} \langle \ell'_1, \ell_2 \rangle} \text{ and } \frac{\ell_2 \xrightarrow{g:\alpha}_2 \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{\longrightarrow} \langle \ell_1, \ell'_2 \rangle}$$

and *Effect*(α , η) = *Effect*_{*i*}(α , η) if $\alpha \in Act_i$.

Example



note that $TS(PG_1) \parallel TS(PG_2) \neq TS(PG_1 \parallel PG_2)$

On atomicity

$$x := x + 1; y := 2x + 1; z := y \operatorname{div} x ||| x := 0$$

non-atomic

Possible execution fragment:

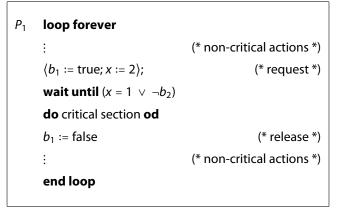
$$\langle x = 11 \rangle \xrightarrow{x := x+1} \langle x = 12 \rangle \xrightarrow{y := 2x+1} \langle x = 12 \rangle \xrightarrow{x := 0} \langle x = 0 \rangle \xrightarrow{z := y/x} \dagger \dots$$

$$\underbrace{\langle x := x + 1; y := 2x + 1; z := y \operatorname{div} x \rangle}_{\text{atomic}} \parallel x := 0$$

Either the left process or the right process is completed first:

$$\langle x = 11 \rangle \xrightarrow{x:=x+1} \langle x = 12 \rangle \xrightarrow{y:=2x+1} \langle x = 12 \rangle \xrightarrow{z:=y/x} \langle x = 12 \rangle \xrightarrow{x:=0} \langle x = 0 \rangle$$

Peterson's mutual exclusion algorithm



b_i is true if and only if process *P_i* is waiting or in critical section if both processes want to enter their critical section, *x* decides who gets access

Banking system

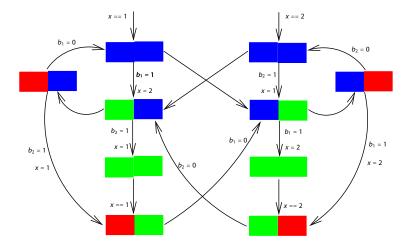
Person Left behaves as follows:		Pe
	while true {	
nc :	$\langle b_1, x = $ true, 2; \rangle	
wt:	wait until($x == 1 \parallel \neg b_2$) {	
cs :	\ldots @account \ldots }	
	$b_1 = false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	$\langle b_2, x = $ true, 1; \rangle
wt:	wait until($x == 2 \neg b_1$) {
cs :	\ldots @account \ldots }
	$b_2 = false;$
	}

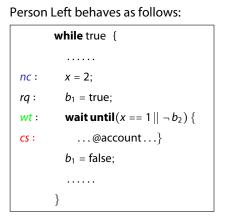
Can we guarantee that only one person at a time has access to the bank account?

Is the banking system safe?



Manually inspect whether two may have access to the account simultaneously: No

Banking system with non-atomic assignment



Person Right behaves as follows:

	while true {
<i>nc</i> :	<i>x</i> = 1;
rq :	$b_2 = true;$
wt:	wait until($x == 2 \parallel \neg b_1$) {
cs :	\ldots @account \ldots }
	$b_2 = false;$
	}

On atomicity again

Possible state sequence:

 $\langle nc_1, nc_2, x = 1, b_1 = \text{false}, b_2 = \text{false} \rangle$ $\langle nc_1, rq_2, x = 1, b_1 = \text{false}, b_2 = \text{false} \rangle$ $\langle rq_1, rq_2, x = 2, b_1 = \text{false}, b_2 = \text{false} \rangle$ $\langle wt_1, rq_2, x = 2, b_1 = \text{true}, b_2 = \text{false} \rangle$ $\langle cs_1, rq_2, x = 2, b_1 = \text{true}, b_2 = \text{false} \rangle$ $\langle cs_1, wt_2, x = 2, b_1 = \text{true}, b_2 = \text{true} \rangle$ $\langle cs_1, cs_2, x = 2, b_1 = \text{true}, b_2 = \text{true} \rangle$

violation of the mutual exclusion property

Parallelism and handshaking

- Concurrent processes run truly in parallel
- To obtain cooperation, some interaction mechanism is needed
- If processes are distributed there is no shared memory
- ⇒ Message passing
 - synchronous message passing (= handshaking)
 - asynchronous message passing (= channel communication)

Handshaking

- Concurrent processes interact by synchronous message passing
 - processes execute synchronized actions together
 - that is, in interaction both processes need to participate at the same time
 - the interacting processes "shake hands"
- Abstract from information that is exchanged
- H is a set of <u>handshake actions</u>
 - actions outside *H* are independent and are interleaved
 - actions in H need to be synchronized

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$, i=1, 2 and $H \subseteq Act_1 \cap Act_2$.

 $TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$ where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

• interleaving for $\alpha \notin H$:

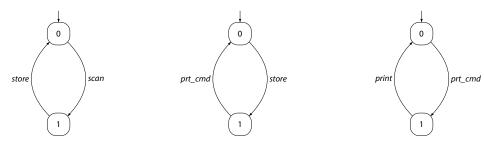
$$\frac{s_1 \stackrel{\alpha}{\longrightarrow} 1 s'_1}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s'_1, s_2 \rangle} \qquad \frac{s_2 \stackrel{\alpha}{\longrightarrow} 2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, s'_2 \rangle}$$

• handshaking for $\alpha \in H$:

$$\frac{s_1 \xrightarrow{\alpha} s_1 s_1' \wedge s_2 \xrightarrow{\alpha} s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2' \rangle}$$

note that $TS_1 \parallel_H TS_2 = TS_2 \parallel_H TS_1$ but $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3)$

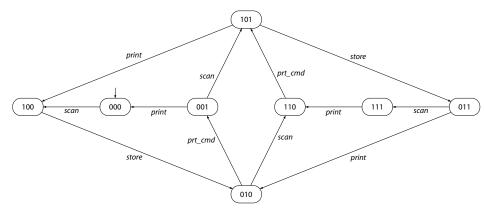
A booking system



BCR || BP || Printer

|| is a shorthand for $||_H$ with $H = Act_1 \cap Act_2$

The parallel composition



Pairwise handshaking

$$TS_1 \parallel \ldots \parallel TS_n$$
 for $H_{i,j} = Act_i \cap Act_j$ with $H_{i,j} \cap Act_k = \emptyset$ for $k \notin \{i, j\}$

State space of $TS_1 \parallel \ldots \parallel TS_n$ is the Cartesian product of those of TS_i

• for
$$\alpha \in Act_i \setminus \left(\bigcup_{\substack{0 < j \leq n \\ i \neq j}} H_{i,j}\right)$$
 and $0 < i \leq n$:

$$\frac{s_i \stackrel{\alpha}{\longrightarrow}_i s'_i}{\langle s_1, \ldots, s_i, \ldots, s_n \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, \ldots, s'_i, \ldots s_n \rangle}$$

• for $\alpha \in H_{i,j}$ and $0 < i < j \le n$:

$$\frac{s_i \stackrel{\alpha}{\longrightarrow}_i s'_i \wedge s_j \stackrel{\alpha}{\longrightarrow}_j s'_j}{\langle s_1, \ldots, s_i, \ldots, s_j, \ldots, s_n \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, \ldots, s'_i, \ldots, s'_j, \ldots, s_n \rangle}$$

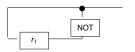
Synchronous parallelism

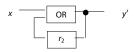
Let
$$TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i)$$
 and $Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$
 $TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$

with *L* as defined before and \rightarrow is defined by the following rule:

$$\frac{s_1 \xrightarrow{\alpha} 1 s'_1 \wedge s_2 \xrightarrow{\beta} 2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s'_1, s'_2 \rangle}$$

typically used for synchronous hardware circuits, cf. next example

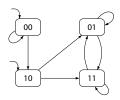




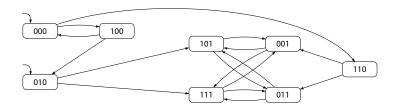
 $TS_1:$

 TS_2 :

у



 $TS_1 \otimes TS_2$:



Channels

- Processes communicate via <u>channels</u> ($c \in Chan$)
- Channels are first-in, first-out buffers
- Channels are types (wrt. their content --- dom(c))
- Channels buffer messages (of appropriate type)
- Channel capacity = maximum # messages that can be stored
 - if $cap(c) \in \mathbb{N}$ then c is a channel with finite capacity
 - if $cap(c) = \infty$ then c has an infinite capacity
 - if cap(c) > 0, there is some "delay" between sending and receipt
 - if cap(c) = 0, then communication via c amounts to handshaking

Channels

- Process $P_i = program graph PG_i + communication actions$
 - *c*!*v* transmit the value *v* along channel *c*
 - *c*?*x* receive a message via channel *c* and assign it to variable *x*
- Comm =

 $\{ c!v, c?x \mid c \in Chan, v \in dom(c), x \in Var. dom(x) \supseteq dom(c) \}$

- Sending and receiving a message
 - c!v puts the value v at the rear of the buffer c (if c is not full)
 - c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
 - if cap(c) = 0, channel c has <u>no</u> buffer
 - if cap(c) = 0, sending and receiving takes place simultaneously this is called synchronous message passing or handshaking
 - if cap(c) > 0, sending and receiving can never take place simultaneously

this is called asynchronous message passing

Channel systems

A program graph over (Var, Chan) is a tuple

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

where

$$\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc \cup \underbrace{Loc \times Comm \times Loc}_{communication actions}$$

A <u>channel system</u> CS over $(\bigcup_{0 < i \le n} Var_i, Chan)$:

$$CS = [PG_1 | \dots | PG_n]$$

with program graphs *PG_i* over (*Var_i*, *Chan*)

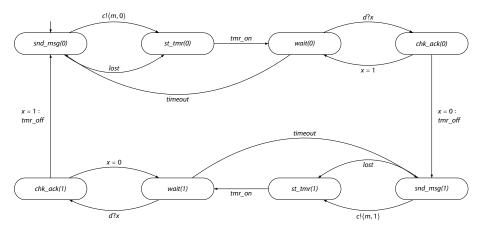
Communication actions

Handshaking

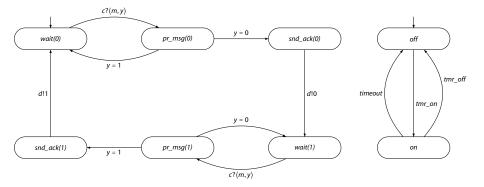
- if cap(c) = 0, then process P_i can perform $\ell_i \xrightarrow{c!v} \ell'_i$ only
- ... if P_j , say, can perform $\ell_j \xrightarrow{c?x} \ell'_i$
- the effect corresponds to the (atomic) <u>distributed</u> assignment x := v.
- Asynchronous message passing
 - if cap(c) > 0, then process P_i can perform $\ell_i \xrightarrow{c!v} \ell'_i$
 - ... if and only if less than cap(c) messages are stored in c
 - P_j may perform $\ell_j \xrightarrow{c?v} \ell'_j$ if and only if the buffer of c is not empty
 - then the first element v of the buffer is extracted and assigned to x (atomically)

	executable if	effect
c!v	c is not "full"	Enqueue(c,v)
c?x	c is not empty	$\langle x := Front(c); Dequeue(c) \rangle;$

The alternating bit protocol: sender



The alternating bit protocol: receiver



Channel evaluations

- A channel evaluation ξ is
 - a mapping from channel $c \in Chan$ onto a sequence $\xi(c) \in dom(c)^*$ such that
 - current length cannot exceed the capacity of *c*: $len(\xi(c)) \le cap(c)$
 - $\xi(c) = v_1 v_2 \dots v_k$ (*cap*(c) $\geq k$) denotes v_1 is at front of buffer etc.
- $\xi[c := v_1 \dots v_k]$ denotes the channel evaluation

$$\xi[c := v_1 \dots v_k](c') = \begin{cases} \xi(c') & \text{if } c \neq c' \\ v_1 \dots v_k & \text{if } c = c'. \end{cases}$$

• Initial channel evaluation ξ_0 equals $\xi_0(c) = \varepsilon$ for any c

Transition system semantics of a channel system

Let $CS = [PG_1 | \dots | PG_n]$ be a <u>channel system</u> over (*Chan*, *Var*) with

 $PG_i = (Loc_i, Act_i, Effect_i, \rightsquigarrow_i, Loc_{0,i}, g_{0,i}), \text{ for } 0 < i \leq n$

TS(*CS*) is the <u>transition system</u> (*S*, *Act*, \rightarrow , *I*, *AP*, *L*) where:

• $S = (Loc_1 \times \cdots \times Loc_n) \times Eval(Var) \times Eval(Chan)$

•
$$Act = (\biguplus_{0 < i \le n} Act_i) \uplus \{\tau\}$$

 ${\ \blacktriangleright\ } \rightarrow$ is defined by the inference rules on the next slides

$$\blacktriangleright I = \left\{ \left\langle \ell_1, \ldots, \ell_n, \eta, \xi_0 \right\rangle \mid \forall i. \ \left(\ell_i \in Loc_{0,i} \& \eta \models g_{0,i} \right) \& \forall c. \xi_0(c) = \varepsilon \right\}$$

•
$$AP = \biguplus_{0 < i \le n} Loc_i \uplus Cond(Var)$$

► $L(\langle \ell_1, \ldots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \ldots, \ell_n \} \cup \{ g \in Cond(Var) \mid \eta \vDash g \}$

Inference rules (I)

• Interleaving for $\alpha \in Act_i$:

$$\frac{\ell_{i} \xrightarrow{g:\alpha} \ell_{i}' \land \eta \models g}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\alpha} \langle \ell_{1}, \dots, \ell_{i}', \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = Effect(\alpha, \eta)$

Synchronous message passing over $c \in Chan, cap(c) = 0$:

$$\frac{\ell_{i} \stackrel{c?x}{\longrightarrow} \ell_{i}' \land \ell_{j} \stackrel{c!y}{\longrightarrow} \ell_{j}' \land i \neq j}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{j}, \dots, \ell_{n}, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_{1}, \dots, \ell_{i}', \dots, \ell_{j}', \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = \eta[x := v].$

Inference rules (II)

- Asynchronous message passing for $c \in Chan$, cap(c) > 0:
 - receive a value along channel c and assign it to variable x:

$$\frac{\ell_i \stackrel{c?x}{\longrightarrow} \ell'_i \land len(\xi(c)) = k > 0 \land \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$

where $\eta' = \eta[x \coloneqq v_1]$ and $\xi' = \xi[c \coloneqq v_2 \dots v_k]$.

transmit value v ∈ dom(c) over channel c:

$$\frac{\ell_i \xrightarrow{c!v} \ell'_i \land len(\xi(c)) = k < cap(c) \land \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta, \xi' \rangle}$$

where $\xi' = \xi[c := v_1 v_2 \dots v_k v].$

Handling unexpected messages

sender S	timer	receiver R	channel c	channel d	event
snd_msg(0)	off	wait(0)	Ø	Ø	
st_tmr(0)	off	wait(0)	$\langle m, 0 \rangle$	Ø	message with bit 0
					transmitted
wait(0)	on	wait(0)	$\langle m, 0 \rangle$	Ø	
snd_msg(0)	off	wait(0)	$\langle m, 0 \rangle$	Ø	timeout
st_tmr(0)	off	wait(0)	$\langle m, 0 \rangle \langle m, 0 \rangle$	Ø	retransmission
st_tmr(0)	off	pr_msg(0)	$\langle m, 0 \rangle$	Ø	receiver reads
					first message
st_tmr(0)	off	snd_ack(0)	$\langle m, 0 \rangle$	Ø	
st_tmr(0)	off	wait(1)	$\langle m, 0 \rangle$	0	receiver changes
					into mode-1
st_tmr(0)	off	pr_msg(1)	Ø	0	receiver reads
					retransmission
st_tmr(0)	off	wait(1)	Ø	0	and ignores it
÷	:	:	:	:	

nanoPromela

- Promela (Process Meta Language): modeling language for SPIN
 - most widely used model checker
 - developed by Gerard Holzmann (Bell Labs, NASA JPL)
 - ACM Software Award 2002
- nanoPromela is the core of Promela
 - shared variables and channel-based communication
 - formal semantics of a Promela model is a channel system
 - processes are defined by means of a guarded command language
- No actions, statements describe effect of actions

nanoPromela

nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ with \mathcal{P}_i processes A process is specified by a statement:

stmt ::=
$$skip | x := expr | c?x | c!expr |$$

 $stmt_1; stmt_2 | atomic \{assignments\} |$
if :: $g_1 \Rightarrow stmt_1 \dots :: g_n \Rightarrow stmt_n$ fi
do :: $g_1 \Rightarrow stmt_1 \dots :: g_n \Rightarrow stmt_n$ od
assignments ::= $x_1 := expr_1; x_2 := expr_2; \dots; x_m := expr_m$

x is a variable in *Var*, expr an expression and *c* a channel, *g*_i a guard assume the Promela specification is type-consistent

Conditional statements

if
$$:: g_1 \Rightarrow \operatorname{stmt}_1 \ldots :: g_n \Rightarrow \operatorname{stmt}_n \mathbf{fi}$$

- Nondeterministic choice between statements stmt_i for which g_i holds
- Test-and-set semantics:

(deviation from Promela)

- guard evaluation + selection of enabled command + execution first atomic step of selected statement is all performed atomically
- The if--fi--command blocks if no guard holds
 - parallel processes may unblock a process by changing shared variables
 - e.g., when y=0, if $:: y > 0 \Rightarrow x := 42$ fi waits until y exceeds 0
- Standard abbreviations:
 - if g then $stmt_1$ else $stmt_2$ fi \equiv if $:: g \Rightarrow stmt_1 :: \neg g \Rightarrow stmt_2$ fi
 - if g then $\operatorname{stmt}_1 \operatorname{fi} \equiv \operatorname{if} :: g \Rightarrow \operatorname{stmt}_1 :: \neg g \Rightarrow \operatorname{skip} \operatorname{fi}$

Iteration statements

do $:: g_1 \Rightarrow \operatorname{stmt}_1 \ldots :: g_n \Rightarrow \operatorname{stmt}_n \operatorname{od}$

- Iterative execution of nondeterministic choice among $g_i \Rightarrow \text{stmt}_i$
 - where guard g_i holds in the current state
- No blocking if all guards are violated; instead, loop is aborted
- do $:: g \Rightarrow$ stmt od \equiv while g do stmt od
- No break-statements to abort a loop (deviation from Promela)

The nanoPromela-code of process \mathcal{P}_1 is given by the statement:

do :: true \Rightarrow skip; atomic{ $b_1 := \text{true}; x := 2$ }; **if** :: $(x = 1) \lor \neg b_2 \Rightarrow crit_1 := \text{true } \mathbf{fi}$ atomic{ $crit_1 := \text{false}; b_1 := \text{false}$ }

od

Beverage vending machine

The following nanoPromela program describes its behaviour:

do	::	true \Rightarrow					
		skip;					
		if	::	nsprite > 0	\Rightarrow	nsprite := nsprite – 1	
			::	nbeer > 0	\Rightarrow	nbeer := nbeer – 1	
			:: $nsprite = nbeer = 0 \Rightarrow skip$				
		fi					
	::	true \Rightarrow	$atomic{nbeer := max; nsprite := max}$				
od							