
Verification

Lecture 18

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



REVIEW: Timed automaton semantics

The transition relation −→ is defined by the following two rules:

▸ Discrete transition: ⟨ℓ, v⟩ d−−→⟨ℓ′, v′⟩ if all following conditions
hold:

▸ there is an edge labeled (g ∶ α,D) from location ℓ to ℓ
′
such that:

▸ g is satisfied by v, i.e., v ⊧ g
▸ v′ = v with all clocks in D reset to 0, i.e., v′ = reset D in v
▸ v′ fulfills the invariant of location ℓ

′
, i.e., v′ ⊧ inv(ℓ′)

▸ Delay transition: ⟨ℓ, v⟩ α−−→⟨ℓ, v+d⟩ for positive real d
▸ if for any 0 ≤ d′ ≤ d the invariant of ℓ holds for v+d′, i.e.
v+d′ ⊧ inv(ℓ)



REVIEW: Timelock, time-divergence and Zenoness

▸ A timed automaton is only considered an adequate model of a
time-critical system if it is:

non-Zeno and timelock-free

▸ Time-convergent paths will be explicitly excluded from the

analysis.



REVIEW: Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ∶∶= true ∣ a ∣ g ∣ Φ ∧ Φ ∣ ¬Φ ∣ Eφ ∣ Aφ

where a ∈ AP, g ∈ ACC(C) and φ is a path-formula defined by:

φ ∶∶= ΦUJΦ

where J ⊆ R≥0 is an interval whose bounds are naturals

Forms of J: [n,m], (n,m], [n,m) or (n,m) for n,m ∈ N and n ≤ m

for right-open intervals,m =∞ is also allowed



REVIEW: Semantics of TCTL

For state s = ⟨ℓ, η⟩ in TS(TA) the satisfaction relation ⊧ is defined by:

s ⊧ true

s ⊧ a iff a ∈ L(ℓ)

s ⊧ g iff η ⊧ g

s ⊧ ¬Φ iff not s ⊧ Φ

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)

s ⊧ Eφ iff π ⊧ φ for some π ∈ Pathsdiv(s)

s ⊧ Aφ iff π ⊧ φ for all π ∈ Pathsdiv(s)

path quantification over time-divergent paths only



REVIEW: TCTL model checking

▸ TCTL model-checking problem: TA ⊧ Φ for non-Zeno TA

TA ⊧ Φ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

timed automaton

iff TS(TA) ⊧ Φ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinite state graph

▸ Idea: consider a finite region graph RG(TA)
▸ Transform TCTL formulaΦ into an ‘‘equivalent’’ CTL-formula Φ̂

▸ Then: TA ⊧TCTL Φ iff RG(TA)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

finite state graph

⊧CTL Φ̂



REVIEW: Eliminating timing parameters

▸ Eliminate all intervals J ≠ [0,∞) from TCTL formulas
▸ introduce a fresh clock, z say, that does not occur in TA
▸ s ⊧ E ◇J Φ iff reset z in s ⊧ ◇(z ∈ J ∧ Φ)

▸ Formally: for any state s of TS(TA) it holds:

s ⊧ EΦUJ Ψ iff s{z ∶= 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state in TS(TA⊕ z)

⊧ E ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

s ⊧ AΦUJ Ψ iff s{z ∶= 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state in TS(TA⊕ z)

⊧ A ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

▸ where TA⊕ z is TA (over C) extended with z /∈ C



REVIEW: Clock equivalence

Impose an equivalence, denoted ≅, on the clock valuations such

that:

(A) Equivalent clock valuations satisfy the same clock constraints g

in TA andΦ:

η ≅ η′ ⇒ (η ⊧ g iff η′ ⊧ g)

▸ no diagonal clock constraints are considered
▸ all the constraints in TA andΦ are thus either of the form x ≤ c

or x < c

(B) Time-divergent paths emanating from equivalent states are
equivalent

▸ this property guarantees that equivalent states satisfy the same

path formulas

(C) The number of equivalence classes under ≅ is finite



REVIEW: First observation

▸ η ⊧ x < c whenever η(x) < c, or equivalently, ⌊η(x)⌋ < c
▸ ⌊d⌋ = max{ c ∈ IN ∣ c ≤ d } and frac(d) = d − ⌊d⌋

▸ η ⊧ x ≤ c whenever ⌊η(x)⌋ < c or ⌊η(x)⌋ = c and frac(η(x)) = 0

⇒ η ⊧ g only depends on ⌊η(x)⌋, and whether frac(η(x)) = 0

▸ Initial suggestion: clock valuations η and η′ are equivalent if:

⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 iff frac(η′(x)) = 0

▸ Note: it is crucial that in x < c and x ≤ c, c is a natural



REVIEW: Second observation

▸ Consider location ℓwith inv(ℓ) = true and only outgoing
transitions:

▸ one guarded with x ≥ 2 (action α) and y > 1 (action β)

▸ Let state s = ⟨ℓ, η⟩with 1 < η(x) < 2 and 0 < η(y) < 1
▸ α and β are disabled, only time may elapse

▸ Transition that is enabled next depends on x < y or x ≥ y
▸ e.g., if frac(η(x)) ≥ frac(η(y)), action α is enabled first

▸ Suggestion for strengthening of initial proposal for all x, y ∈ C

by:

frac(η(x)) ≤ frac(η(y)) if and only if frac(η′(x)) ≤ frac(η′(y))



REVIEW: Final observation

▸ So far, clock equivalence yield a denumerable though not

finite quotient

▸ For TA ⊧ Φ only the clock constraints in TA andΦ are relevant
▸ let cx ∈ IN the largest constant with which x is compared in TA

orΦ

⇒ If η(x) > cx then the actual value of x is irrelevant
▸ constraints on ≅ so far are only relevant for clock values of x (y)

up to cx (cy)



Clock equivalence

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ≅ η′, if:

(1) for any x ∈ C: (η(x) > cx) ∧ (η′(x) > cx) or
(η(x) ≤ cx) ∧ (η′(x) ≤ cx)

(2) for any x ∈ C: if η(x), η′(x) ≤ cx then:

⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 iff frac(η2(x)) = 0

(3) for any x, y ∈ C: if η(x), η′(x) ≤ cx and η(y), η′(y) ≤ cy , then:

frac(η(x)) ≤ frac(η(y)) iff frac(η′(x)) ≤ frac(η′(y)).

s ≅ s′ iff ℓ = ℓ
′
and η ≅ η′



Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP′



Regions

▸ The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) ∣ η ≅ η′ }

▸ The state region of s = ⟨ℓ, η⟩ ∈ TS(TA) is defined by:

[s] = ⟨ℓ, [η]⟩ = { ⟨s, η′⟩ ∣ η′ ∈ [η] }



Number of regions

The number of clock regions is bounded from below and above by:

∣C∣! ∗∏
x∈C

cx ≤ ∣ Eval(C)/≅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

number of regions

∣ ≤ ∣C∣! ∗ 2∣C∣−1 ∗∏
x∈C

(2cx + 2)

where for the upper bound it is assumed that cx ≥ 1 for any x ∈ C

the number of state regions is ∣Loc∣ times larger



Preservation of atomic properties

1. For η, η′ ∈ Eval(C) such that η ≅ η′:

η ⊧ g if and only if η′ ⊧ g for any g ∈ AP′ ∖ AP

2. For s, s′ ∈ TS(TA) such that s ≅ s′:

s ⊧ a if and only if s′ ⊧ a for any a ∈ AP′

where AP′ includes all atomic propositions and atomic clock constraints in

TA andΦ.



Unbounded and successor regions

▸ Clock region r∞ = { η ∈ Eval(C) ∣ ∀x ∈ C. η(x) > cx } is
unbounded

▸ r′ is the successor (clock) region of r, denoted r′ = succ(r), if
either:

1. r = r∞ and r = r′, or

2. r ≠ r∞, r ≠ r′ and ∀η ∈ r:

∃d ∈ R>0 . (η+d ∈ r′ and ∀0 ≤ d′ ≤ d. η+d′ ∈ r ∪ r′)

▸ The successor region: succ(⟨ℓ, r⟩) = ⟨ℓ, succ(r)⟩



Region automaton

For non-Zeno TAwith TS(TA) = (S,Act,→, I,AP, L) let:

RG(TA, Φ) = (S′,Act ∪ { τ },→ ′, I,AP′, L′) with

▸ S′ = S/ ≅ = { [s] ∣ s ∈ S} and I′ = { [s] ∣ s ∈ I }, the state regions
▸ L′(⟨ℓ, r⟩) = L(ℓ) ∪ {g ∈ AP′ ∖ AP ∣ r ⊧ g}

▸ →′ is defined by:
ℓ
g∶α,D↝ ℓ

′ r ⊧ g reset D in r ⊧ inv(ℓ′)
⟨ℓ, r⟩ α−−→′ ⟨ℓ′, reset D in r⟩

and

r ⊧ inv(ℓ) succ(r) ⊧ inv(ℓ)
⟨ℓ, r⟩ τ−−→′ ⟨ℓ, succ(r)⟩



Example: simple light switch

switch_on

switch_off

off on

x ≤ 2
{x}

x = 2

x= 0 x= 1 x= 2

x= 1 x= 2

0< x< 1 1< x< 2 x> 2

x> 21< x< 20< x< 1

off off off off off off

on on on on on

x= 0
on

switch on

sw
itch

off



Time convergence

For non-Zeno TA and π = s0 s1 s2 . . . an initial, infinite path in TS(TA):
(a) π is time-convergent ⇒ ∃ state region ⟨ℓ, r⟩ such that for

some j:

si ∈ ⟨ℓ, r⟩ for all i ≥ j

(b) If ∃ state region ⟨ℓ, r⟩with r /= r∞ and an index j such that:

si ∈ ⟨ℓ, r⟩ for all i ≥ j

then π is time-convergent



Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal



Example

switch_on

switch_off

off on

x < 2
{x}

x = 1

x= 0 x= 1 x= 2

x= 1 x= 2

0< x< 1 1< x< 2 x> 2

x> 21< x< 20< x< 1

off off off off off off

on on on on on

x= 0
on



Correctness theorem

Let TA be a non-Zeno timed automaton andΦ a TCTL◇ formula.

Then:

TA ⊧ Φ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

TCTL semantics

iff RG(TA, Φ) ⊧ Φ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL semantics



Overview TCTL model checking

Require: timed automaton TA and TCTL formulaΦ (both over AP and C)

Ensure: TA ⊧ Φ

Φ̂ ∶= eliminate the timing parameters fromΦ;

determine the equivalence classes under ≅;

construct the region graph TS = RG(TA);

apply the CTL model-checking algorithm to check TS ⊧ Φ̂;

TA ⊧ Φ if and only if TS ⊧ Φ̂



Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. The model-checking problem for timed LTL (and TCTL∗) is

undecidable



Zones

▸ Clock constraints are conjunctions of atomic constraints
▸ x ≺ c and x − y ≺ c for ≺ ∈ {<, ≤, =, ≥, >}
▸ restrict to TAwith only conjunctive clock constraints
▸ and (as before) assume no difference clock constraints

▸ A clock zone is the set of clock valuations that satisfy a clock
constraint

▸ a clock zone for g is the maximal set of clock valuations

satisfying g

▸ Clock zone of g: [[g ]] = { η ∈ Eval(C) ∣ η ⊧ g}
▸ use z, z′ and so on to range over zones

▸ The state zone of s = ⟨ℓ, η⟩ ∈ TS(TA) is ⟨ℓ, z⟩with η ∈ z



Zone automaton: intuition

0 1 32

1

2

3

0 1 32

1

2

3

0 1 32

1

2

3

leaving first

0 1 32

1

2

3

entering second

0 1 32

1

2

3

leaving second

0 1 32

1

2

3

entering third

leaving initial entering first

x ∶= 1 y ≤ 2 x ≥ 2



Normalization: intuition

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

symbolic semantics has infinitely many zones:

normalization yields a finite zone graph:
x ≥ 20

{ x, y }

x = 10
{ x }

{ x, y }

x ≤ 10



Successor and reset zones

▸ z′ is the successor (clock) zone of z, denoted z′ = z↑, if:
▸ z↑ = { η + d ∣ η ∈ z, d ∈ R>0 }

▸ z′ is the zone obtained from z by resetting clocks D:
▸ reset D in z = { reset D in η ∣ η ∈ z }



Zone graph

For non-Zeno TA let:

ZG(TA, Φ) = (Q,Q0, E, L
′) with

▸ Q = Loc × Zone(C) and Q0 = { ⟨ℓ, z0⟩ ∣ ℓ ∈ Loc0 }
▸ L(⟨ℓ, z⟩) = L(ℓ) ∪ {g ∣ g ∈ z }
▸ E consists of two types of edges:

▸ Discrete transitions: ⟨ℓ, z⟩ α
−−→⟨ℓ′ , reset D in (z ∧ g) ∧ inv(ℓ′)⟩

if ℓ
g∶α ,D↝ ℓ

′
, and

▸ Delay transitions: ⟨ℓ, z⟩ τ
−−→⟨ℓ, z↑ ∧ inv(ℓ)⟩.



Correctness (1)

For timed automaton TA and any initial state ⟨ℓ, η0⟩:
▸ Soundness:

⟨ℓ, { η0 }
²

z0

⟩→∗ ⟨ℓ′, z′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in ZG(TA)

implies ⟨ℓ, η0⟩→∗ ⟨ℓ′, η′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in TS(TA)

for allη′ ∈ z′

▸ Completeness:

⟨ℓ, η0⟩→∗ ⟨ℓ′, η′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in TS(TA)

implies ⟨ℓ, { η0 }⟩→∗ ⟨ℓ′, z′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in ZG(TA)

for somez′withη′ ∈ z′



Zone normalization

▸ To obtain a finite representation, zone normalization is

employed

▸ For zone z, norm(z) = { η ∣ η ≅ η′, η′ ∈ z }
▸ where ≅ is the clock equivalence

▸ There can only be finitely many normalized zones

▸ ⟨ℓ, z⟩→norm ⟨ℓ′, norm(z′)⟩ if ⟨ℓ, z⟩→ ⟨ℓ′, z′⟩



Correctness (2)

For timed automaton TA and any initial state ⟨ℓ, η⟩:
▸ Soundness:

⟨ℓ, { η0 }⟩→∗norm ⟨ℓ′, z′⟩ implies ⟨ℓ, η0⟩→∗ ⟨ℓ′, η′⟩
▸ for all η′ ∈ z′ such that ∀x. η′(x) ≤ cx

▸ Completeness:

⟨ℓ, η0⟩→∗ ⟨ℓ′, η′⟩with∀x. η′(x) ≤ cx implies⟨ℓ, { η0 }⟩→∗norm ⟨ℓ′, z′⟩
▸ for some z′ such that η′ ∈ z′

▸ Finiteness: the transition relation→norm is finite



Forward reachability algorithm

Passed ∶= ∅; // explored states so far

Wait ∶= { (ℓ0 , z0) }; // states to be explored

while Wait ≠ ∅ // still states to go

do select and remove (ℓ, z) fromWait;

if (ℓ = goal ∧ z ∩ zgoal ≠ ∅)then return ‘‘reachable’’! fi ;

if ¬(∃(ℓ, z′) ∈ Passed. z ⊆ z′) // no ‘‘super’’state explored yet

then add (ℓ, z) to Passed // (ℓ, z) is a new state

foreach (ℓ′ , z′)with (ℓ, z) →norm (ℓ′ , z′)
do add (ℓ′ , z′) to Wait; // add symbolic successors

fi

od

return ‘‘not reachable’’!


