Verification

Lecture 17

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Timed automaton

A timed automaton is a tuple

$$TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- $L: Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\Rightarrow \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$ is a transition relation, and
- $inv : Loc \rightarrow CC(C)$ is an invariant-assignment function

REVIEW: Clock constraints

Clock constraints over set C of clocks are defined by:

 $g ::= \text{ true } \left| x < c \right| x - y < c \left| x \le c \right| x - y \le c \left| \neg g \right| g \land g$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let CC(C) denote the set of clock constraints over C
- ▶ shorthands: $x \ge c$ denotes $\neg (x < c)$ and $x \in [c_1, c_2)$ or $c_1 \le x < c_2$ denotes $\neg (x < c_1) \land (x < c_2)$
- Atomic clock constraints do not contain true, ¬ and ∧
 - let ACC(C) denote the set of atomic clock constraints over C
- Simplification: In the following, we assume constraints are diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.</p>

REVIEW: Guards versus location invariants

REVIEW: Guards versus location invariants

REVIEW: Guards versus location invariants

Arbitrary clock differences

time --->

Composing timed automata

Let $TA_i = (Loc_i, Act_i, C_i, \rightsquigarrow_i, Loc_{0,i}, inv_i, AP, L_i)$ and H an action-set $TA_1 \parallel_H TA_2 = (Loc, Act_1 \cup Act_2, C, \rightsquigarrow, Loc_0, inv, AP, L)$ where:

- $Loc = Loc_1 \times Loc_2$ and $Loc_0 = Loc_{0,1} \times Loc_{0,2}$ and $C = C_1 \cup C_2$
- $inv(\langle \ell_1, \ell_2 \rangle) = inv_1(\ell_1) \land inv_2(\ell_2)$ and $L(\langle \ell_1, \ell_2 \rangle) = L_1(\ell_1) \cup L_2(\ell_2)$
- ▶ ~> is defined by the inference rules:

for
$$\alpha \in H$$

$$\frac{\ell_1 \stackrel{g_1:\alpha,D_1}{\sim} \ell'_1 \wedge \ell_2 \stackrel{g_2:\alpha,D_2}{\sim} \ell'_2}{\langle \ell_1, \ell_2 \rangle \stackrel{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell'_1, \ell'_2 \rangle}$$

for
$$\alpha \notin H$$
: $\frac{\ell_1 \overset{g:\alpha,D}{\sim_1} \ell'_1}{\langle \ell_1, \ell_2 \rangle \overset{g:\alpha,D}{\sim} \langle \ell'_1, \ell_2 \rangle}$ and $\frac{\ell_2 \overset{g:\alpha,D}{\sim_2} \ell'_2}{\langle \ell_1, \ell_2 \rangle \overset{g:\alpha,D}{\sim} \langle \ell_1, \ell'_2 \rangle}$

Clock valuations

- A <u>clock valuation</u> v for set C of clocks is a function $v : C \longrightarrow \mathbb{R}_{\geq 0}$
 - ▶ assigning to each clock $x \in C$ its current value v(x)
- Clock valuation v+d for $d \in \mathbb{R}_{\geq 0}$ is defined by:
 - (v+d)(x) = v(x) + d for all clocks $x \in C$
- Clock valuation reset x in v for clock x is defined by:

$$(\operatorname{reset} x \operatorname{in} v)(y) = \begin{cases} v(y) & \text{if } y \neq x \\ 0 & \text{if } y = x. \end{cases}$$

reset x in (reset y in v) is abbreviated by reset x, y in v

Timed automaton semantics

For timed automaton $TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$: Transition system $TS(TA) = (S, Act', \rightarrow, I, AP', L')$ where:

- $S = Loc \times val(C)$, state $s = \langle \ell, v \rangle$ for location ℓ and clock valuation v
- $Act' = Act \cup \mathbb{R}_{\geq 0}$, (discrete) actions and time passage actions
- ► $I = \{ \langle \ell_0, v_0 \rangle \mid \ell_0 \in Loc_0 \land v_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- ► $L'(\langle \ell, v \rangle) = L(\ell) \cup \{g \in ACC(C) \mid v \vDash g\}$
- \blacktriangleright \rightarrow is the transition relation defined on the next slide

Timed automaton semantics

The transition relation \rightarrow is defined by the following two rules:

- Discrete transition: $\langle \ell, v \rangle \xrightarrow{d} \langle \ell', v' \rangle$ if all following conditions hold:
 - there is an edge labeled $(g : \alpha, D)$ from location ℓ to ℓ' such that:
 - g is satisfied by v, i.e., $v \models g$
 - v' = v with all clocks in *D* reset to 0, i.e., v' = reset D in v
 - v' fulfills the invariant of location ℓ' , i.e., $v' \models inv(\ell')$
- **Delay** transition: $\langle \ell, v \rangle \xrightarrow{\alpha} \langle \ell, v+d \rangle$ for positive real d
 - if for any $0 \le d' \le d$ the invariant of ℓ holds for v+d', i.e. $v+d' \models inv(\ell)$

Time divergence

- Let for any t < d, for fixed $d \in \mathbb{R}_{>0}$, clock valuation $\eta + t \models inv(\ell)$
- A possible execution fragment starting from the location ℓ is:

$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta + d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta + d_1 + d_2 \rangle \xrightarrow{d_3} \langle \ell, \eta + d_1 + d_2 + d_3 \rangle \xrightarrow{d_4} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + ...$ converges towards d
- such path fragments are called time-convergent
- ⇒ time advances only up to a certain value
- Time-convergent execution fragments are unrealistic and ignored
 - much like unfair paths (as we will see later on)

Time divergence

- Infinite path fragment π is <u>time-divergent</u> if *ExecTime*(π) = ∞
- The function *ExecTime* : $Act \cup \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ is defined as:

$$ExecTime(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = d \in \mathbb{R}_{>0} \end{cases}$$

• For infinite execution fragment $\rho = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in TS(TA) let:

ExecTime
$$(\rho) = \sum_{i=0}^{\infty} ExecTime(\tau_i)$$

- for path fragment π in TS(TA) induced by ρ:
 ExecTime(π) = ExecTime(ρ)
- For state *s* in *TS*(*TA*):

 $Paths_{div}(s) = \{ \pi \in Paths(s) \mid \pi \text{ is time-divergent } \}$

Example: light switch

The path π in *TS*(*Switch*) in which on- and of-periods of one minute alternate:

 $\pi = \langle off, 0 \rangle \langle off, 1 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \langle off, 2 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \dots$

is <u>time-divergent</u> as *ExecTime*(π) = 1 + 1 + 1 + ... = ∞ . The path:

$$\pi' = \langle off, 0 \rangle \langle off, 1/2 \rangle \langle off, 3/4 \rangle \langle off, 7/8 \rangle \langle off, 15/16 \rangle \dots$$

is <u>time-convergent</u>, since *ExecTime*(π') = $\sum_{i \ge 1} \left(\frac{1}{2}\right)^i = 1 < \infty$

Timelock

- State $s \in TS(TA)$ contains a <u>timelock</u> if $Paths_{div}(s) = \emptyset$
 - there is no behavior in s where time can progress ad infinitum
 - clearly: any terminal state contains a timelock (but also non-terminal states may do)
 - terminal location does not necessarily yield a state with timelock (e.g. inv = true)
- TA is <u>timelock-free</u> if no state in Reach(TS(TA)) contains a timelock
- Timelocks are considered as modeling flaws that should be avoided

Zenoness

- A TA that performs infinitely many actions in finite time is Zeno
- Path π in *TS*(*TA*) is <u>Zeno</u> if:
 - it is time-convergent, and
 - ► infinitely many actions $\alpha \in Act$ are executed along π
- TA is <u>non-Zeno</u> if there does not exist an initial Zeno path in TS(TA)
 - any π in TS(TA) is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as modeling flaws that should be avoided

A sufficient criterion for Non-Zenoness

Let *TA* with set *C* of clocks such that for every control cycle:

$$\ell_0 \overset{g_1:\alpha_1,C_1}{\rightsquigarrow} \ell_1 \overset{g_2:\alpha_2,C_2}{\rightsquigarrow} \dots \overset{g_n:\alpha_n,C_n}{\rightsquigarrow} \ell_n$$

there exists a clock $x \in C$ such that:

- 1. $x \in C_i$ for some $0 < i \le n$, and
- 2. there exists a constant $c \in \mathbb{N}_{>0}$ such that for all clock evaluations η :

 $\eta(x) < c$ implies ($\eta \neq g_j$ or $\eta \neq inv(\ell_j)$), for some $0 < j \le n$

Then: TA is non-Zeno

Timelock, time-divergence and Zenoness

 A timed automaton is only considered an adequate model of a time-critical system if it is:

non-Zeno and timelock-free

 Time-convergent paths will be explicitly excluded from the analysis.

Timed CTL

Syntax of TCTL <u>state-formulas</u> over *AP* and set *C*:

$$\Phi ::= \mathsf{true} \left| \begin{array}{c} a \end{array} \right| \left| \begin{array}{c} g \end{array} \right| \left| \begin{array}{c} \Phi \end{array} \wedge \left| \begin{array}{c} \Phi \end{array} \right| \left| \begin{array}{c} \neg \Phi \end{array} \right| \left| \begin{array}{c} \mathsf{E} \varphi \end{array} \right| \left| \begin{array}{c} \mathsf{A} \varphi \end{array} \right|$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path-formula defined by:

$$\varphi ::= \Phi U^{J} \Phi$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals Forms of J: [n, m], (n, m], [n, m) or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$

for right-open intervals, $m = \infty$ is also allowed

Some abbreviations

 $\diamond \diamond^{J} \Phi = \text{true } \mathsf{U}^{J} \Phi$ $\diamond \mathsf{E} \Box^{J} \Phi = \neg \mathsf{A} \diamond^{J} \neg \Phi \text{ and } \mathsf{A} \Box^{J} \Phi = \neg \mathsf{E} \diamond^{J} \neg \Phi$ $\diamond \Phi = \diamond^{[0,\infty)} \Phi \text{ and } \Box \Phi = \Box^{[0,\infty)} \Phi$

Semantics of TCTL

For state $s = \langle \ell, \eta \rangle$ in *TS*(*TA*) the satisfaction relation \vDash is defined by:

s ⊨ true		
$s \vDash a$	iff	$a \in L(\ell)$
$s \vDash g$	iff	$\eta \vDash g$
$S\vDash \neg \Phi$	iff	not $s \models \Phi$
$\mathbf{S} \vDash \Phi \land \Psi$	iff	$(s \models \Phi)$ and $(s \models \Psi)$
$s \vDash E \varphi$	iff	$\pi \vDash \varphi$ for some $\pi \in Paths_{div}(s)$
$s \vDash A \varphi$	iff	$\pi \vDash \varphi$ for all $\pi \in Paths_{div}(s)$

path quantification over time-divergent paths only

The \Rightarrow relation

For infinite path fragments in TS(TA) performing ∞ many actions let:

 $s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots$ with $d_0, d_1, d_2 \dots \ge 0$

denote the equivalence class containing all infinite path fragments induced by execution fragments of the form:

where $k_i \in \mathbb{N}$, $d_i \in \mathbb{R}_{\geq 0}$ and $\alpha_i \in Act$ such that $\sum_{j=1}^{k_i} d_i^j = d_i$. Notation: $s_i + d = \langle \ell_i, \eta_i + d \rangle$ where $s_i = \langle \ell_i, \eta_i \rangle$.

Semantics of TCTL

For time-divergent path $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots$:

 $\pi \vDash \Phi \, \mathsf{U}^{\mathsf{J}} \, \Psi$

iff

 $\exists i \ge 0. s_i + d \models \Psi \text{ for some } d \in [0, d_i] \text{ with } \sum_{k=0}^{i-1} d_k + d \in J$ and $\forall j \le i. s_j + d' \models \Phi \lor \Psi \text{ for every } d' \in [0, d_j] \text{ with } \sum_{i=0}^{j-1} d_k + d' \le \sum_{k=0}^{i-1} d_k + d$

TCTL-semantics for timed automata

- Let *TA* be a timed automaton with clocks *C* and locations *Loc*
- For TCTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}$$

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

```
TA \models \Phi if and only if \forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \Phi
```

where $\eta_0(x) = 0$ for all $x \in C$

Timed CTL versus CTL

Due to ignoring time-convergent paths in TCTL semantics, possibly:

$$\underbrace{TS(TA) \vDash_{\mathsf{TCTL}} \mathsf{A} \varphi}_{\mathsf{TCTL semantics}} \quad \mathsf{but} \quad \underbrace{TS(TA) \not\models_{\mathsf{CTL}} \mathsf{A} \varphi}_{\mathsf{CTL semantics}}$$

- CTL semantics considers all paths, timed CTL only time-divergent paths
- For $\Phi = A \Box (on \longrightarrow A \Diamond off)$ and the light switch

 $TS(Switch) \vDash_{TCTL} \Phi$ whereas $TS(TA) \not\models_{CTL} \Phi$

 there are time-convergent paths on which location on is never left

Characterizing timelock

- TCTL semantics is also well-defined for TA with timelock
- A state is <u>timelock-free</u> if and only if it satisfies E □ true
 - some time-divergent path satisfies □true, i.e., there is ≥ 1 time-divergent path
 - note: for fair CTL, the states in which a fair path starts also satisfy E □ true
- ► *TA* is timelock-free iff $\forall s \in Reach(TS(TA))$: $s \models E \square$ true
- Timelocks can thus be checked by model checking

TCTL model checking

• TCTL model-checking problem: $TA \models \Phi$ for non-Zeno TA

$TA \vDash \Phi$	iff	$TS(TA) \vDash \Phi$
\smile		\frown
timed automaton		infinite state graph

- Idea: consider a finite region graph RG(TA)
- Transform TCTL formula Φ into an "equivalent" CTL-formula $\widehat{\Phi}$
- Then: $TA \vDash_{\mathsf{TCTL}} \Phi$ iff $RG(TA) \vDash_{\mathsf{CTL}} \widehat{\Phi}$

finite state graph

Eliminating timing parameters

- Eliminate all intervals $J \neq [0, \infty)$ from TCTL formulas
 - introduce a fresh clock, z say, that does not occur in TA
 - $s \models \mathsf{E} \diamondsuit^{\mathsf{J}} \Phi$ iff reset z in $s \models \diamondsuit(z \in \mathsf{J} \land \Phi)$
- Formally: for any state s of TS(TA) it holds:

$$s \vDash \mathsf{E} \Phi \mathsf{U}^{\mathsf{J}} \Psi$$
 iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \vDash \mathsf{E} \mathsf{E} ((\Phi \lor \Psi) \mathsf{U} (z \in \mathsf{J}) \land \Psi)$

$$s \models A \Phi U^{J} \Psi$$
 iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models A((\Phi \lor \Psi) U(z \in J) \land \Psi)$

• where $TA \oplus z$ is TA (over C) extended with $z \notin C$

Clock equivalence

Impose an equivalence, denoted \cong , on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in *TA* and Φ :

$$\eta \cong \eta' \Rightarrow \begin{pmatrix} \eta \vDash g & \text{iff} & \eta' \vDash g \end{pmatrix}$$

- no diagonal clock constraints are considered
- all the constraints in TA and Φ are thus either of the form x ≤ c or x < c</p>
- (B) Time-divergent paths emanating from equivalent states are equivalent
 - this property guarantees that equivalent states satisfy the same path formulas
- (C) The number of equivalence classes under \cong is finite

First observation

- $\eta \models x < c$ whenever $\eta(x) < c$, or equivalently, $\lfloor \eta(x) \rfloor < c$
 - ▶ $\lfloor d \rfloor = \max \{ c \in \mathbb{N} \mid c \leq d \}$ and $frac(d) = d \lfloor d \rfloor$
- $\eta \models x \le c$ whenever $\lfloor \eta(x) \rfloor < c$ or $\lfloor \eta(x) \rfloor = c$ and $frac(\eta(x)) = 0$
- $\Rightarrow \eta \models g$ only depends on $\lfloor \eta(x) \rfloor$, and whether $frac(\eta(x)) = 0$
 - Initial suggestion: clock valuations η and η' are equivalent if:

 $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $frac(\eta(x)) = 0$ iff $frac(\eta'(x)) = 0$

▶ Note: it is crucial that in *x* < *c* and *x* ≤ *c*, *c* is a natural

Second observation

- Consider location l with inv(l) = true and only outgoing transitions:
 - one guarded with $x \ge 2$ (action α) and y > 1 (action β)
- Let state $s = \langle \ell, \eta \rangle$ with $1 < \eta(x) < 2$ and $0 < \eta(y) < 1$
 - α and β are disabled, only time may elapse
- ► Transition that is enabled next depends on x < y or x ≥ y</p>
 - e.g., if $frac(\eta(x)) \ge frac(\eta(y))$, action α is enabled first
- Suggestion for strengthening of initial proposal for all x, y ∈ C by:

 $frac(\eta(x)) \leq frac(\eta(y))$ if and only if $frac(\eta'(x)) \leq frac(\eta'(y))$

Final observation

- So far, clock equivalence yield a denumerable though not finite quotient
- For $TA \models \Phi$ only the clock constraints in TA and Φ are relevant
 - let $c_x \in \mathbb{N}$ the <u>largest constant</u> with which x is compared in TA or Φ
- \Rightarrow If $\eta(x) > c_x$ then the actual value of x is irrelevant
 - ► constraints on \cong so far are only relevant for clock values of x(y)up to $c_x(c_y)$

Midterm Review

Verification -- Part I

- Transition systems: sequential circuits, concurrent systems, channel systems
- Linear-time properties: safety vs. liveness
- Regular properties: Büchi automata
- LTL: from LTL to Büchi automata, LTL model checking
- CTL*: LTL vs. CTL, fairness, model checking
- Symbolic verification: BDDs, bounded model checking
- Implementation relations: Bisimulation, simulation, stuttering

 $AXAGp \equiv AGAXp$

 $\mathsf{EX} \mathsf{EG} p \equiv \mathsf{EG} \mathsf{EX} p$

AF AG *p* can be expressed in LTL.

If Φ is a CTL formula and ψ is an LTL formula such that $\Phi \equiv \psi$, then $\neg \Phi \equiv \neg \psi$.

 $s \models \mathsf{EF} \mathsf{EG} p$ iff there is a path π from s with $\pi \models \mathsf{F} \mathsf{G} p$

 $s \models EG EF p$ iff there is a path π from s with $\pi \models GF p$ Let *TS* be a transition system and Φ a CTL formula. If *TS* does <u>not</u> satisfy $\neg \Phi$, then *TS* satisfies Φ .

Let s_1, s_2 be states of a transition system and let

$$\Phi = \mathsf{E}(a \mathsf{U}(\mathsf{EX} b \land \mathsf{EX} c)).$$

If $s_1 \models \Phi$ and $\underline{\text{not}} s_2 \models \Phi$ then $Traces(s_1) \neq Traces(s_2)$.

CTL* equivalence is strictly finer than CTL equivalence.

LTL equivalence is strictly finer than CTL equivalence.

CTL equivalence is strictly finer than LTL equivalence.

If $s \models AFp$ then $s \models_{fair} AFp$

If $s \models \mathsf{EF} p$ then $s \models_{fair} \mathsf{EF} p$

 $s \vDash_{fair} E(a \cup b)$ iff $s \vDash E(a \cup (b \land EG true))$

$$s \vDash_{fair} E(a \cup b) \text{ iff}$$

 $s \vDash E(a \cup (b \land a_{fair}))$

where a_{fair} is an atomic proposition with $s \models a_{fair}$ iff $s \models_{fair}$ EG true

For each Büchi automaton A there is an LTL formula φ such that Words(φ) is the language of A.

If two states s_1 an s_2 in a finite transition system satisfy the same CTL_{\U} formulas, then s_1 and s_2 are bisimilar.

Bisimilar transition systems are simulation equivalent.

The following two transition systems are stutter-trace equivalent.

Let TS_1 and TS_2 be two stutter-bisimilar transition systems and let φ be an LTL formula without Next

then either both TS_1 and TS_2 satisfy φ or neither satisfies φ .

The following two transition systems are divergence-sensitive stutter-bisimilar.

For every boolean function there is a variable ordering such that the size of the ROBDD is polynomial.

For every boolean function there is a variable ordering such that the size of the ROBDD is exponential.