Verification

Lecture 16

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a bisimulation on $T S$ if for any $\left(q_{1}, q_{2}\right) \in \mathcal{R}$:

- $L\left(q_{1}\right)=L\left(q_{2}\right)$
- if $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ then there exists an $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
- if $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ then there exists an $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$ q_{1} and q_{2} are bisimilar, $q_{1} \sim_{\text {TS }} q_{2}$, if $\left(q_{1}, q_{2}\right) \in \mathcal{R}$ for some bisimulation \mathcal{R} for $T S$

$$
q_{1} \sim_{\text {TS }} q_{2} \text { if and only if } T S_{q_{1}} \sim T S_{q_{2}}
$$

Bisimulation vs. CTL* and CTL equivalence

Let $T S$ be a finite transition system and s, s^{\prime} states in $T S$
The following statements are equivalent:

$$
\text { (1) } s \sim_{\text {TS }} s^{\prime}
$$

(2) s and s^{\prime} are CTL-equivalent, i.e., $s \equiv_{\text {cтL }} s^{\prime}$
(3) s and s^{\prime} are CTL* -equivalent, i.e., $s \equiv_{c \tau L^{*}} s^{\prime}$
this is proven in three steps: $\equiv C T L \quad \subseteq \sim \subseteq \equiv_{C T L} \subseteq \equiv_{C T L}$
important: equivalence is also obtained for any sub-logic containing \neg, \wedge and X

REVIEW: An algorithm for bisimulation quotienting

Input: Transition system $(S, A c t, \rightarrow, I, A P, L)$
Output: Bisimulation quotient

1. $\Pi=S / \sim_{A P}$
$\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser
2.1 pick a block B that is a splitter of Π than $S / \sim \sim_{S}$
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

REVIEW: Simulation order on states

A simulation for $T S=(S, A c t, \rightarrow, I, A P, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $\left(q_{1}, q_{2}\right) \in \mathcal{R}$:

$$
\text { 1. } L\left(q_{1}\right)=L\left(q_{2}\right)
$$

2. if $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ then there exists an $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
q_{1} is simulated by q_{2}, denoted by $q_{1} \leq_{\text {TS }} q_{2}$, if there exists a simulation \mathcal{R} for $T S$ with $\left(q_{1}, q_{2}\right) \in \mathcal{R}$

$$
q_{1} \leq_{T S} q_{2} \text { if and only if } T S_{q_{1}} \leq T S_{q_{2}}
$$

$$
q_{1} \simeq_{T S} q_{2} \text { if and only if } q_{1} \leq_{T S} q_{2} \text { and } q_{2} \leq_{T S} q_{1}
$$

Similar but not bisimilar

$T S_{\text {left }} \simeq T S_{\text {right }}$ but $T S_{\text {left }} \nsim T S_{\text {right }}$

REVIEW: $\simeq, \forall C T L^{*}$, and $\exists C T L^{*}$ equivalence

For finite transition system TS without terminal states:

$$
\simeq_{T S}=\equiv_{\forall \mathrm{CTL}^{*}}=\equiv_{\forall C T L}=\equiv_{\exists \mathrm{CTL}}{ }^{*}=\equiv_{\exists \mathrm{CTL}}
$$

REVIEW: Skeleton for simulation preorder checking

Require: finite transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ over $A P$
Ensure: simulation order $\leq_{T S}$

$$
\mathcal{R}:=\left\{\left(q_{1}, q_{2}\right) \mid L\left(q_{1}\right)=L\left(q_{2}\right)\right\} ;
$$

while \mathcal{R} is not a simulation do

$$
\text { choose }\left(q_{1}, q_{2}\right) \in \mathcal{R}
$$

such that $\left(q_{1}, q_{1}^{\prime}\right) \in E$, but for all q_{2}^{\prime} with $\left(q_{2}, q_{2}^{\prime}\right) \in E_{1}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \notin \mathcal{R}$; $\mathcal{R}:=\mathcal{R} \backslash\left\{\left(q_{1}, q_{2}\right)\right\}$
end while
return \mathcal{R}

The number of iterations is bounded above by $|S|^{2}$, since:

$$
Q \times Q \supseteq \mathcal{R}_{0} \supsetneqq \mathcal{R}_{1} \supsetneqq \mathcal{R}_{2} \supsetneqq \ldots \supsetneqq \mathcal{R}_{n}=\leq
$$

Checking trace equivalence

Let $T S_{1}$ and $T S_{2}$ be finite transition systems over $A P$. Then:

1. The problem whether

$$
\operatorname{Traces}_{f i n}\left(T S_{1}\right)=\operatorname{Traces}_{f i n}\left(T S_{2}\right) \quad \text { is PSPACE-complete }
$$

2. The problem whether

$$
\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right) \quad \text { is PSPACE-complete }
$$

Overview implementation relations

	bisimulation equivalence	simulation order	trace equivalence
preservation of temporal-logical properties	CTL^{*} CTL	$\forall \mathrm{CTL}^{*} / \exists \mathrm{CTL}^{*}$ $\forall \mathrm{CTL} / \exists \mathrm{CTL}$	LTL
checking equivalence	PTIME	PTIME	PSPACE- Complete
graph minimization	PTIME	PTIME	---

Motivation: Stutter Equivalence

- Bisimulation, simulation and trace equivalence are strong
- each transition $s \rightarrow s^{\prime}$ must be matched by a transition of a related state
- for comparing models at different abstraction levels, this is too fine
- consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of "invisible" actions
- each transition $s \rightarrow s^{\prime}$ must be matched by a path fragment of a related state
- matching means: ending in a state related to s^{\prime}, and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
- but: what kind of properties are preserved?
- but: can such quotients still be obtained efficiently?
- but: how to treat infinite internal computations?

Stuttering equivalence

- $s \rightarrow s^{\prime}$ in transition system $T S$ is a stutter step if $L(s)=L\left(s^{\prime}\right)$
- stutter steps do not affect the state labels of successor states
- Paths π_{1} and π_{2} are stuttering equivalent, denoted $\pi_{1} \cong \pi_{2}$:
- if there exists an infinite sequence $A_{0} A_{1} A_{2} \ldots$ with $A_{i} \subseteq A P$ and
- natural numbers $n_{0}, n_{1}, n_{2}, \ldots, m_{0}, m_{1}, m_{2}, \ldots \geq 1$ such that:

$$
\begin{aligned}
\operatorname{trace}\left(\pi_{1}\right) & =\underbrace{A_{0} \ldots A_{0}}_{n_{0} \text {-times }} \underbrace{A_{1} \ldots A_{1}}_{n_{1} \text {-times }} \underbrace{A_{2} \ldots A_{2}}_{n_{2} \text {-times }} \ldots \\
\operatorname{trace}\left(\pi_{2}\right) & =\underbrace{A_{0}, \ldots, A_{0}}_{m_{0} \text {-times }} \underbrace{A_{1} \ldots A_{1}}_{m_{1} \text {-times }} \underbrace{A_{2} \ldots A_{2}}_{m_{2} \text {-times }} \ldots
\end{aligned}
$$

$\pi_{1} \cong \pi_{2}$ if their traces only differ in their stutter steps i.e., if both their traces are of the form $A_{0}^{+} A_{1}^{+} A_{2}^{+} \ldots$ for $A_{i} \subseteq A P$

Stutter trace equivalence

Transition systems $T S_{i}$ over $A P, i=1,2$, are stutter-trace equivalent:

$$
T S_{1} \cong T S_{2} \quad \text { if and only if } \quad T S_{1} \sqsubseteq T S_{2} \text { and } T S_{2} \sqsubseteq T S_{1}
$$

where \subseteq is defined by:
$T S_{1} \sqsubseteq T S_{2} \quad$ iff $\quad \forall \sigma_{1} \in \operatorname{Traces}\left(T S_{1}\right)\left(\exists \sigma_{2} \in \operatorname{Traces}\left(T S_{2}\right) . \sigma_{1} \cong \sigma_{2}\right)$
clearly: $\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)$ implies $T S_{1} \cong T S_{2}$, but not always the reverse

Example

The X operator

Stuttering equivalence does not preserve the validity of next-formulas:

$$
\sigma_{1}=A B B B \ldots \text { and } \sigma_{2}=A A A B B B B \ldots \text { for } A, B \subseteq A P \text { and } A \neq B
$$

Then for $b \in B \backslash A$:

$$
\sigma_{1} \cong \sigma_{2} \quad \text { but } \quad \sigma_{1} \vDash \mathrm{Xb} \text { and } \sigma_{2} \not \neq \mathrm{X} b .
$$

\Rightarrow a logical characterization of \cong can only be obtained by omitting X in fact, it turns out that this is the only modal operator that is not preserved by $\cong!$

Stutter trace and $\mathrm{LTL}_{, ~}$ equivalence

$$
\begin{aligned}
& \text { For traces } \sigma_{1} \text { and } \sigma_{2} \text { over } 2^{A P} \text { it holds: } \\
& \sigma_{1} \cong \sigma_{2} \Rightarrow\left(\sigma_{1} \vDash \varphi \text { if and only if } \sigma_{2} \vDash \varphi\right) \\
& \text { for any } \mathrm{LTL}_{\backslash x} \text { formula } \varphi \text { over } A P
\end{aligned}
$$

$\operatorname{LTL}_{\backslash x}$ denotes the class of LTL formulas without the next step operator X

Stutter trace and $\mathrm{LTL}_{, ~}$ equivalence

For transition systems $T S_{1}, T S_{2}$ over $A P$ (without terminal states):

$$
\text { (a) } T S_{1} \cong T S_{2} \text { implies } T S_{1} \equiv \equiv_{L T L_{\backslash x}} T S_{2}
$$

(b) if $T S_{1} \sqsubseteq T S_{2}$ then for any $\mathrm{LL}_{\backslash x}$ formula $\varphi: T S_{2} \vDash \varphi$ implies $T S_{1} \vDash \varphi$

Stutter insensitivity

- LT property P is stutter-insensitive if $[\sigma]_{\cong} \subseteq P$, for any $\sigma \in P$
- P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P :

$$
T S_{1} \cong T S_{2} \quad \text { implies } \quad T S_{1} \vDash P \text { iff } T S_{2} \vDash P
$$

- Moreover: $T S_{1} \sqsubseteq T S_{2}$ and $T S_{2} \vDash P$ implies $T S_{1} \vDash P$
- For any $\mathrm{LTL}_{\backslash x}$ formula φ, LT property $\operatorname{Words}(\varphi)$ is stutter insensitive
- but: some stutter insensitive LT properties cannot be expressed in LTL $\times x$
- for LTL formula φ with Words (φ) stutter insensitive:

$$
\text { there exists } \psi \in \operatorname{LTL}_{\backslash \times} \text { such that } \psi \equiv\llcorner T L \varphi
$$

Stutter bisimulation

Stutter bisimulation

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$ \mathcal{R} is a stutter-bisimulation for $T S$ if for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

1. $L\left(s_{1}\right)=L\left(s_{2}\right)$
2. if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}, s_{1}^{\prime}\right) \notin \mathcal{R}$, then there exists a finite path fragment $s_{2} u_{1} \ldots u_{n} s_{2}^{\prime}$ with $n \geq 0$ and $\left(s_{2}, u_{i}\right) \in \mathcal{R}$ and $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
3. if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{2}, s_{2}^{\prime}\right) \notin \mathcal{R}$, then there exists a finite path fragment $s_{1} v_{1} \ldots v_{n} s_{1}^{\prime}$ with $n \geq 0$ and $\left(s_{1}, v_{i}\right) \in \mathcal{R}$ and $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
s_{1}, s_{2} are stutter-bisimulation equivalent, denoted $s_{1} \approx{ }_{\tau} s_{2}$, if there exists a stutter bisimulation \mathcal{R} for $T S$ with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$

Example

\mathcal{R} inducing the following partitioning of the state space is a stutter bisimulation:
$\left\{\left\{\left\langle n_{1}, n_{2}\right\rangle,\left\langle n_{1}, w_{2}\right\rangle,\left\langle w_{1}, n_{2}\right\rangle,\left\langle w_{1}, w_{2}\right\rangle\right\},\left\{\left\langle c_{1}, n_{2}\right\rangle,\left\langle c_{1}, w_{2}\right\rangle\right\},\left\{\left\langle n_{1}, c_{2}\right\rangle,\left\langle w_{1}, c_{2}\right\rangle\right\}\right\}$ In fact, this is the coarsest stutter bisimulation, i.e., \mathcal{R} equals $\approx_{T S}$

Stutter-bisimilar transition systems

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right), i=1,2$, be transition systems over $A P$ A stutter bisimulation for $\left(T S_{1}, T S_{2}\right)$ is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ such that:

1. \mathcal{R} and \mathcal{R}^{-1} are stutter-bisimulations for $T S_{1} \oplus T S_{2}$, and
2. $\forall s_{1} \in I_{1} .\left(\exists s_{2} \in I_{2} .\left(s_{1}, s_{2}\right) \in \mathcal{R}\right)$ and $\forall s_{2} \in I_{2} .\left(\exists s_{1} \in I_{1} .\left(s_{1}, s_{2}\right) \in \mathcal{R}\right)$.
$T S_{1}$ and $T S_{2}$ are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $T S_{1} \approx T S_{2}$, if there exists a stutter bisimulation for $\left(T S_{1}, T S_{2}\right)$

Stutter bisimulation quotient

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and stutter bisimulation $\approx T S \subseteq S \times S$ let $T S / \approx^{\text {div }}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right), \quad$ be the quotient of $T S$ under $\approx s$ where

- $S^{\prime}=S / \approx s=\left\{[q]_{\approx s} \mid q \in S\right\}$ with $[q]_{\approx s}=\left\{q^{\prime} \in S \mid q \approx s q^{\prime}\right\}$
- $I^{\prime}=\left\{[q]_{\sim_{s}} \mid q \in I\right\}$
- \rightarrow^{\prime} is defined by: $\frac{s \xrightarrow{\alpha} s^{\prime} \text { and } s \not \approx s^{\prime}}{[s]_{\approx} \xrightarrow{\tau}\left[s^{\prime}\right]_{\approx}}$
- $L^{\prime}\left([q]_{\approx s}\right)=L(q)$
note that (a) no self-loops occur in $T S / \approx s$ and (b) $T S \approx s T S / \approx s$

Stutter trace and stutter bisimulation

For transition systems $T S_{1}$ and $T S_{2}$ over $A P$:

- Known fact: $T S_{1} \sim T S_{2}$ implies $\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)$
- But not: $T S_{1} \approx T S_{2}$ implies $T S_{1} \cong T S_{2}$!
- So:
- bisimilar transition systems are trace equivalent
- but stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
- stutter bisimulation does not impose any constraint on such paths
- but \cong requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable

Stutter bisimulation does not preserve LTL $_{\star \times}$

$T S_{\text {left }} \approx T S_{\text {right }} \quad$ but $\quad T S_{\text {left }} \neq \mathrm{F} a$ and $T S_{\text {right }} \vDash \mathrm{F} a$

```
stutter-trace inclusion:
        TS \sqsubseteqTS [iff }\quad\forall\mp@subsup{\sigma}{1}{}\in\operatorname{Traces}(T\mp@subsup{S}{1}{})\exists\mp@subsup{\sigma}{2}{}\in\operatorname{Traces}(T\mp@subsup{S}{2}{}).\mp@subsup{\sigma}{1}{}\cong\mp@subsup{\sigma}{2}{
stutter-trace equivalence:
    TS \cong}\congT\mp@subsup{S}{2}{}\quad\mathrm{ iff }T\mp@subsup{S}{1}{}\sqsubseteqT\mp@subsup{S}{2}{}\mathrm{ and }T\mp@subsup{S}{2}{}\sqsubseteqT\mp@subsup{S}{1}{
stutter-bisimulation equivalence:
    TS \approx TS iff there exists a stutter-bisimulation for (TS 
stutter-bisimulation equivalence with divergence:
    TS % div TS \ iff there exists a divergence-sensitive
    stutter bisimulation for ( }T\mp@subsup{S}{1}{},T\mp@subsup{S}{2}{}
```


Divergence sensitivity

- Stutter paths are paths that only consist of stutter steps
- no restrictions are imposed on such paths by stutter bisimulation
\Rightarrow stutter trace-equivalence (\cong) and stutter bisimulation (\approx) are incomparable
$\Rightarrow \approx$ and LTL $_{\times x}$ equivalence are incomparable
- Stutter paths diverge: they never leave an equivalence class
- Remedy: only relate divergent states or non-divergent states
- divergent state = a state that has a stutter path
\Rightarrow relate states only if they either both have stutter paths or none of them
- This yields divergence-sensitive stutter bisimulation ($\approx^{\text {div }}$)
$\Rightarrow \approx$ div is strictly finer than \cong (and \approx)
$\Rightarrow \approx \approx^{\text {div }}$ and $C T L^{*} \times$ equivalence coincide

Divergence sensitivity

Let $T S$ be a transition system and \mathcal{R} an equivalence relation on S

- s is $\underline{\mathcal{R}}$-divergent if there exists an infinite path fragment $s s_{1} s_{2} \ldots \in \operatorname{Paths}(s)$ such that $\left(s, s_{j}\right) \in \mathcal{R}$ for all $j>0$
- s is \mathcal{R}-divergent if there is an infinite path starting in s that only visits $[s]_{\mathcal{R}}$
- \mathcal{R} is divergence sensitive if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
s_{1} is \mathcal{R}-divergent implies s_{2} is \mathcal{R}-divergent
- \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none of the states are \mathcal{R}-divergent

Divergence-sensitive stutter bisimulation

s_{1}, s_{2} in $T S$ are divergent stutter-bisimilar, denoted $s_{1} \approx{ }_{T S}^{\text {div }} s_{2}$, if:
\exists divergent-sensitive stutter bisimulation \mathcal{R} on $T S$ such that $\left(s_{1}, s_{2}\right) \in \mathcal{R}$
$\approx_{T S}^{\text {div }}$ is an equivalence, the coarsest divergence-sensitive stutter bisimulation for $T S$
and the union of all divergence-sensitive stutter bisimulations for $T S$

Quotient transition system under $\approx^{d i v}$

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and divergent-sensitive stutter bisimulation $\approx^{\text {div }} \subseteq S \times S$,

$$
T S / \approx^{\operatorname{div}}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right) \text { is the quotient of } T S \text { under } \approx^{\text {div }}
$$

where

- S^{\prime}, I^{\prime} and L^{\prime} are defined as usual (for eq. classes $[s]_{\text {div }}$ under $\approx^{\text {div }}$)
- \rightarrow^{\prime} is defined by:

$$
\frac{s \xrightarrow{\alpha} s^{\prime} \wedge s \not \nsim_{\text {div }} s^{\prime}}{[s]_{\text {div }} \xrightarrow{\tau}{ }_{\text {div }}^{\prime}\left[s^{\prime}\right]_{\text {div }}} \quad \text { and } \quad \frac{s \text { is } \approx^{\text {div }} \text {-divergent }}{[s]_{\text {div }} \xrightarrow{\tau}{ }_{\text {div }}^{\prime}[s]_{\text {div }}}
$$

note that $T S \approx^{\text {div }} T S / \approx^{\text {div }}$

Example

$T S / \approx s$

$$
T S / \approx_{S}^{d i v}
$$

$\approx^{\text {div }}$ on paths

For infinite path fragments $\pi_{i}=s_{0, i} s_{1, i} s_{2, i} \ldots, i=1,2$, in $T S$:

$$
\pi_{1} \approx_{T S}^{\operatorname{div}} \pi_{2}
$$

if and only if there exists an infinite sequence of indexes

$$
0=j_{0}<j_{1}<j_{2}<\ldots \quad \text { and } \quad 0=k_{0}<k_{1}<k_{2}<\ldots
$$

with:

$$
s_{j, 1} \approx_{T s}^{\text {div }} s_{k, 2} \text { for all } j_{r-1} \leq j<j_{r} \text { and } k_{r-1} \leq k<k_{r} \text { with } r=1,2, \ldots .
$$

Comparing paths by $\approx d i v$

$$
\begin{gathered}
\text { Let } T S=(S, A c t, \rightarrow, I, A P, L), s_{1}, s_{2} \in S \text {. Then: } \\
s_{1} \approx_{T S}^{\text {div }} s_{2} \text { implies } \forall \pi_{1} \in \operatorname{Paths}\left(s_{1}\right) \cdot\left(\exists \pi_{2} \in \operatorname{Paths}\left(s_{2}\right) \cdot \pi_{1} \approx_{T S}^{\text {div }} \pi_{2}\right)
\end{gathered}
$$

Stutter equivalence versus $\approx d i v$

Let $T S_{1}$ and $T S_{2}$ be transition systems over $A P$. Then:
 with divergence
whereas the reverse implication does not hold in general

CTL $_{i x}^{*}$ equivalence and \approx div

For finite transition systems $T S$ without terminal states, and s_{1}, s_{2} in $T S$:

$$
s_{1} \approx_{T s}^{d i v} s_{2} \text { iff } s_{1} \equiv \mathrm{CTL}_{\backslash x}^{*} s_{2} \text { iff } s_{1} \equiv \mathrm{CTL}_{\backslash x} s_{2}
$$

divergent-sensitive stutter bisimulation coincides with $\mathrm{CTL}_{, ~}$ and $C T L_{* x}^{*}$ equivalence

Comparative semantics

Timed Automata

Time-critical systems

- Timing issues are of crucial importance for many systems, e.g.,
- landing gear controller of an airplane, railway crossing, robot controllers
- steel production controllers, communication protocols
- In time-critical systems correctness depends on:
- not only on the logical result of the computation, but
- also on the time at which the results are produced
- How to model timing issues:
- discrete-time or continuous-time?

A discrete time domain

- Time has a discrete nature, i.e., time is advanced by discrete steps
- time is modelled by naturals; actions can only happen at natural time values
- a specific tick action is used to model the advance of one time unit
\Rightarrow delay between any two events is always a multiple of the minimal delay of one time unit
- Properties can be expressed in traditional temporal logic
- the next-operator "measures" time
- two time units after being red, the light is green: G (red $\Rightarrow \mathrm{XX}$ green)
- within two time units after red, the light is green:

$$
G(\text { red } \Rightarrow(\text { green } \vee X \text { green } \vee X X \text { green }))
$$

- Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine

A discrete time domain

- Main advantage: conceptual simplicity
- state graphs systems equipped with a "tick" transition suffice
- standard temporal logics can be used
\Rightarrow traditional model-checking algorithms suffice
- Main limitations:
- (minimal) delay between any pair of actions is a multiple of an a priori fixed minimal delay
\Rightarrow difficult (or impossible) to determine this in practice
\Rightarrow limits modeling accuracy
\Rightarrow inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

but: infinitely many states and infinite branching
How to check a property like:
once in a yellow state, eventually the system is in a blue state within π time-units?

Approach

- Restrict expressivity of the property language
- e.g., only allow reference to natural time units
\Longrightarrow Timed CTL
- Model timed systems symbolically rather than explicitly
\Longrightarrow Timed Automata
- Consider a finite quotient of the infinite state space on-demand
- i.e., using an equivalence that depends on the property and the timed automaton

What is a timed automaton?

- a program graph with locations and edges
- a location is labeled with the valid atomic propositions
- taking an edge is instantaneous, i.e, consumes no time

What is a timed automaton?

- equipped with real-valued clocks x, y, z, \ldots
- clocks advance implicitly, all at the same speed
- logical constraints on clocks can be used as guards of actions

What is a timed automaton?

- clocks can be reset when taking an edge
- assumption: all clocks are zero when entering the initial location initially

What is a timed automaton?

- guards indicate when an edge may be taken
- a location invariant specifies the amount of time that may be spent in a location
- before a location invariant becomes invalid, an edge must be taken

A real-time coffee machine

Clock constraints

- Clock constraints over set C of clocks are defined by:

$$
g::=\text { true }|x<c| x-y<c|x \leq c| x-y \leq c|\neg g| g \wedge g
$$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let $C C(C)$ denote the set of clock constraints over C
- shorthands: $x \geq c$ denotes $\neg(x<c)$ and $x \in\left[c_{1}, c_{2}\right)$ or

$$
c_{1} \leq x<c_{2} \text { denotes } \neg\left(x<c_{1}\right) \&\left(x<c_{2}\right)
$$

- Atomic clock constraints do not contain true, \neg and \wedge
- let $A C C(C)$ denote the set of atomic clock constraints over C
- Simplification: In the following, we assume constraints are diagonal-free, i.e., do neither contain $x-y \leq c \operatorname{nor} x-y<c$.

Timed automaton

A timed automaton is a tuple

$$
T A=\left(L o c, A c t, C, \leadsto, L o c_{0}, i n v, A P, L\right) \quad \text { where: }
$$

- Loc is a finite set of locations.
- $L o c_{0} \subseteq L o c$ is a set of initial locations
- C is a finite set of clocks
- $L: L o c \rightarrow 2^{A P}$ is a labeling function for the locations
- $\leadsto \subseteq \operatorname{LoC} \times C C(C) \times A c t \times 2^{C} \times L o c$ is a transition relation, and
- inv : Loc $\rightarrow C(C)$ is an invariant-assignment function

Intuitive interpretation

- Edge $\ell \xrightarrow{g: \alpha, C^{\prime}} \ell^{\prime}$ means:
- action α is enabled once guard g holds
- when moving from location ℓ to ℓ^{\prime}, any clock in C^{\prime} will be reset to zero
- inv (ℓ) constrains the amount of time that may be spent in location ℓ
- the location ℓ must be left before the invariant $\operatorname{inv}(\ell)$ becomes invalid

Guards versus location invariants

The effect of a lowerbound guard:

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Guards versus location invariants

The effect of a guard and an invariant:

