
Verification

Lecture 16

Bernd Finkbeiner

Peter Faymonville

Michael Gerke

REVIEW: Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (q1 , q2) ∈ R:

▸ L(q1) = L(q2)

▸ if q′1 ∈ Post(q1) then there exists an q′2 ∈ Post(q2)with (q
′

1 , q
′

2) ∈ R

▸ if q′2 ∈ Post(q2) then there exists an q′1 ∈ Post(q1)with (q
′

1 , q
′

2) ∈ R

q1 and q2 are bisimilar, q1 ∼TS q2, if (q1 , q2) ∈ R for some bisimulationR for TS

q1 ∼TS q2 if and only if TSq1 ∼ TSq2

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system and s, s′ states in TS

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s
′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s
′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and X

REVIEW: An algorithm for bisimulation quotienting

Input: Transition system (S,Act,→, I,AP, L)
Output: Bisimulation quotient

1. Π = S/∼AP (q, q′)∈∼AP⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser

2.1 pick a block B that is a splitter of Π than S/∼TS
2.2 Π = Refine(Π, B)

3. return Π

REVIEW: Simulation order on states

A simulation for TS = (S,Act,→, I,AP, L) is a binary relationR ⊆ S× S
such that for all (q1, q2) ∈ R:

1. L(q1) = L(q2)

2. if q′1 ∈ Post(q1)
then there exists an q′2 ∈ Post(q2)with (q

′

1, q
′

2) ∈ R

q1 is simulated by q2, denoted by q1 ⪯TS q2,

if there exists a simulationR for TSwith (q1 , q2) ∈ R

q1 ⪯TS q2 if and only if TSq1 ⪯ TSq2

q1 ≃TS q2 if and only if q1 ⪯TS q2 and q2 ⪯TS q1

Similar but not bisimilar

s1 {a}

s2 ∅ s3 ∅

s4 {b} s5 { c }

t1 {a}

t2 ∅

t3 {b} t4 { c }

TSleft ≃ TSright but TSleft /∼ TSright

REVIEW: ≃, ∀CTL∗, and ∃CTL∗ equivalence

For finite transition system TSwithout terminal states:

≃TS = ≡∀CTL∗ = ≡∀CTL = ≡∃CTL∗ = ≡∃CTL

REVIEW: Skeleton for simulation preorder checking

Require: finite transition system TS = (S,Act,→, I,AP, L) over AP
Ensure: simulation order ⪯TS

R ∶= { (q1 , q2) ∣ L(q1) = L(q2) };

whileR is not a simulation do

choose (q1 , q2) ∈ R
such that (q1 , q

′

1) ∈ E, but for all q
′

2 with (q2 , q
′

2) ∈ E, (q
′

1 , q
′

2) /∈ R;
R ∶= R ∖ { (q1 , q2) }

end while

return R

The number of iterations is bounded above by ∣S∣2, since:

Q ×Q ⊇ R0 ⫌ R1 ⫌ R2 ⫌ . . . ⫌ Rn = ⪯

Checking trace equivalence

Let TS1 and TS2 be finite transition systems over AP. Then:

1. The problem whether

Tracesfin(TS1) = Tracesfin(TS2) is PSPACE-complete

2. The problem whether

Traces(TS1) = Traces(TS2) is PSPACE-complete

Overview implementation relations

bisimulation simulation trace

equivalence order equivalence

preservation of CTL∗ ∀CTL∗/∃CTL∗ LTL

temporal-logical CTL ∀CTL/∃CTL
properties

checking PTIME PTIME PSPACE-

equivalence complete

graph PTIME PTIME ---

minimization

Motivation: Stutter Equivalence

▸ Bisimulation, simulation and trace equivalence are strong
▸ each transition s→ s′ must be matched by a transition of a

related state
▸ for comparing models at different abstraction levels, this is too

fine
▸ consider e.g., modeling an abstract action by a sequence of

concrete actions

▸ Idea: allow for sequences of ‘‘invisible’’ actions
▸ each transition s→ s′ must be matched by a path fragment of a

related state
▸ matching means: ending in a state related to s′, and all previous

states invisible

▸ Abstraction of such internal computations yields coarser
quotients

▸ but: what kind of properties are preserved?
▸ but: can such quotients still be obtained efficiently?
▸ but: how to treat infinite internal computations?

Stuttering equivalence

▸ s→ s′ in transition system TS is a stutter step if L(s) = L(s′)
▸ stutter steps do not affect the state labels of successor states

▸ Paths π1 and π2 are stuttering equivalent, denoted π1 ≅ π2:
▸ if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
▸ natural numbers n0 , n1 , n2 , . . .,m0 ,m1 ,m2 , . . . ≥ 1 such that:

trace(π1) = A0 . . .A0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n0-times

A1 . . .A1
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n1-times

A2 . . .A2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n2-times

. . .

trace(π2) = A0 , . . . ,A0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m0-times

A1 . . .A1
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
m1-times

A2 . . .A2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
m2-times

. . .

π1 ≅ π2 if their traces only differ in their stutter steps

i.e., if both their traces are of the form A+0A
+

1A
+

2 . . . for Ai ⊆ AP

Stutter trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent:

TS1 ≅ TS2 if and only if TS1 ⊑ TS2 and TS2 ⊑ TS1

where ⊑ is defined by:

TS1 ⊑ TS2 iff ∀σ1 ∈ Traces(TS1) (∃σ2 ∈ Traces(TS2). σ1 ≅ σ2)

clearly: Traces(TS1) = Traces(TS2) implies TS1 ≅ TS2, but not always the

reverse

Example

s1 {a}

s0 {a}

s2 ∅

t0 {a}

t1 ∅

u0 {a}

u1 ∅

u2 {a}

The X operator

Stuttering equivalence does not preserve the validity of

next-formulas:

σ1 = ABBB . . . and σ2 = AAABBBB . . . for A, B ⊆ AP and A ≠ B

Then for b ∈ B ∖ A:

σ1 ≅ σ2 but σ1 ⊧ Xb and σ2 /⊧ Xb.

⇒ a logical characterization of ≅ can only be obtained by omitting X

in fact, it turns out that this is the only modal operator that is not

preserved by ≅ !

Stutter trace and LTL
∖X equivalence

For traces σ1 and σ2 over 2
AP it holds:

σ1 ≅ σ2 ⇒ (σ1 ⊧ φ if and only if σ2 ⊧ φ)

for any LTL
∖X formula φ over AP

LTL∖X denotes the class of LTL formulas without the next step operator X

Stutter trace and LTL
∖X equivalence

For transition systems TS1, TS2 over AP (without terminal states):

(a) TS1 ≅ TS2 implies TS1 ≡LTL∖X TS2

(b) if TS1 ⊑ TS2 then for any LTL
∖X formula φ: TS2 ⊧ φ implies TS1 ⊧ φ

Stutter insensitivity

▸ LT property P is stutter-insensitive if [σ]≅ ⊆ P, for any σ ∈ P
▸ P is stutter insensitive if it is closed under stutter equivalence

▸ For any stutter-insensitive LT property P:

TS1 ≅ TS2 implies TS1 ⊧ P iff TS2 ⊧ P

▸ Moreover: TS1 ⊑ TS2 and TS2 ⊧ P implies TS1 ⊧ P

▸ For any LTL
∖X formula φ, LT propertyWords(φ) is stutter

insensitive
▸ but: some stutter insensitive LT properties cannot be expressed

in LTL∖X
▸ for LTL formula φ withWords(φ) stutter insensitive:

there exists ψ ∈ LTL∖X such that ψ ≡LTL φ

Stutter bisimulation

s1 ≈ s2
↓

s1 ≈ u1
↓

s1 ≈ s2 s1 ≈ u2
↓ can be completed to ↓

s′1 ⋮
(with s1 /≈ s′1) ↓

s1 ≈ un
↓ ↓

s′1 ≈ s′2

Stutter bisimulation

Let TS = (S,Act,→, I,AP, L) be a transition system andR ⊆ S × S
R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:
1. L(s1) = L(s2)
2. if s′1 ∈ Post(s1)with (s1, s′1) /∈ R, then there exists a finite path

fragment s2 u1 . . . un s
′

2 with n ≥ 0 and (s2, ui) ∈ R and

(s′1, s′2) ∈ R
3. if s′2 ∈ Post(s2)with (s2, s′2) /∈ R, then there exists a finite path

fragment s1 v1 . . . vn s
′

1 with n ≥ 0 and (s1, vi) ∈ R and

(s′1, s′2) ∈ R

s1 , s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2, if there exists a stutter

bisimulationR for TSwith (s1 , s2) ∈ R

Example

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

R inducing the following partitioning of the state space is a stutter

bisimulation:

{{⟨n1 , n2⟩, ⟨n1 ,w2⟩, ⟨w1 , n2⟩, ⟨w1 ,w2⟩}, {⟨c1 , n2⟩, ⟨c1 ,w2⟩}, {⟨n1 , c2⟩, ⟨w1 , c2⟩}}

In fact, this is the coarsest stutter bisimulation, i.e.,R equals ≈TS

Stutter-bisimilar transition systems

Let TSi = (Si ,Acti ,→i , Ii, AP, Li), i = 1, 2, be transition systems over AP

A stutter bisimulation for (TS1, TS2) is a binary relationR ⊆ S1 × S2
such that:

1. R andR−1 are stutter-bisimulations for TS1 ⊕ TS2, and

2. ∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and
∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R).

TS1 and TS2 are stutter-bisimulation equivalent (stutter-bisimilar, for

short), denoted TS1 ≈ TS2, if there exists a stutter bisimulation for (TS1 , TS2)

Stutter bisimulation quotient

For TS = (S,Act,→, I,AP, L) and stutter bisimulation ≈TS ⊆ S × S let

TS/≈div = (S′, { τ },→′, I′,AP, L′), be the quotient of TS under ≈S

where

▸ S′ = S/≈S = { [q]≈S ∣ q ∈ S}with [q]≈S = {q′ ∈ S ∣ q ≈S q′ }
▸ I′ = { [q]≈S ∣ q ∈ I }

▸ →′ is defined by:
s α−−→ s′ and s /≈ s′
[s]≈ τ−−→′ [s′]≈

▸ L′([q]≈S) = L(q)

note that (a) no self-loops occur in TS/≈S and (b) TS ≈S TS/≈S

Stutter trace and stutter bisimulation

For transition systems TS1 and TS2 over AP:

▸ Known fact: TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)
▸ But not: TS1 ≈ TS2 implies TS1 ≅ TS2!
▸ So:

▸ bisimilar transition systems are trace equivalent
▸ but stutter-bisimilar transition systems are not always stutter

trace-equivalent!

▸ Why? Stutter paths!
▸ stutter bisimulation does not impose any constraint on such

paths
▸ but ≅ requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable

∼
=

6≈

6∼=

≈

Stutter bisimulation does not preserve LTL
∖X

t0

∅

t1

{a}

s0

∅

s1

{a}

TSleft ≈ TSright but TSleft /⊧ Fa and TSright ⊧ Fa

stutter-trace inclusion:

TS1 ⊑ TS2 iff ∀σ1 ∈ Traces(TS1) ∃σ2 ∈ Traces(TS2). σ1 ≅ σ2

stutter-trace equivalence:

TS1 ≅ TS2 iff TS1 ⊑ TS2 and TS2 ⊑ TS1

stutter-bisimulation equivalence:

TS1 ≈ TS2 iff there exists a stutter-bisimulation for (TS1 , TS2)

stutter-bisimulation equivalence with divergence:

TS1 ≈
div TS2 iff there exists a divergence-sensitive

stutter bisimulation for (TS1 , TS2)

Divergence sensitivity

▸ Stutter paths are paths that only consist of stutter steps
▸ no restrictions are imposed on such paths by stutter

bisimulation

⇒ stutter trace-equivalence (≅) and stutter bisimulation (≈) are
incomparable

⇒ ≈ and LTL∖X equivalence are incomparable

▸ Stutter paths diverge: they never leave an equivalence class

▸ Remedy: only relate divergent states or non-divergent states
▸ divergent state = a state that has a stutter path

⇒ relate states only if they either both have stutter paths or none

of them

▸ This yields divergence-sensitive stutter bisimulation (≈div)
⇒ ≈div is strictly finer than ≅ (and ≈)
⇒ ≈div and CTL∗

∖X equivalence coincide

Divergence sensitivity

Let TS be a transition system andR an equivalence relation on S

▸ s isR-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈ R for all j > 0
▸ s isR-divergent if there is an infinite path starting in s that only

visits [s]R
▸ R is divergence sensitive if for any (s1, s2) ∈ R:

s1 isR-divergent implies s2 isR-divergent

▸ R is divergence-sensitive if in any [s]R either all or none of the

states areR-divergent

Divergence-sensitive stutter bisimulation

s1, s2 in TS are divergent stutter-bisimilar, denoted s1 ≈
div
TS s2, if:

∃ divergent-sensitive stutter bisimulationR on TS such that (s1, s2) ∈ R

≈divTS is an equivalence, the coarsest divergence-sensitive stutter

bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Quotient transition system under ≈div

For TS = (S,Act,→, I,AP, L) and divergent-sensitive stutter

bisimulation ≈div ⊆ S × S,

TS/≈div = (S′, { τ },→′, I′,AP, L′) is the quotient of TS under ≈div

where

▸ S′, I′ and L′ are defined as usual (for eq. classes [s]div under ≈div)
▸ →′ is defined by:

s α−−→ s′ ∧ s /≈div s′

[s]div τ−−→ ′div [s′]div
and

s is ≈div-divergent

[s]div τ−−→ ′div [s]div

note that TS ≈div TS/≈div

Example

s3

∅

s2

{a}

s0

{a}

s1

{a}

TS

[s3]≈S

∅

[s0]≈S

{a}

TS/≈S

[s3]≈div
S

∅

[s2]≈div
S

{a}

[s0]div

{a}

TS/≈divS

≈div on paths

For infinite path fragments πi = s0,i s1,i s2,i . . ., i = 1, 2, in TS:

π1 ≈
div
TS π2

if and only if there exists an infinite sequence of indexes

0 = j0 < j1 < j2 < . . . and 0 = k0 < k1 < k2 < . . .

with:

sj,1 ≈
div
TS sk,2 for all jr−1 ≤ j < jr and kr−1 ≤ k < kr with r = 1, 2,

Comparing paths by ≈div

Let TS = (S,Act,→, I,AP, L), s1, s2 ∈ S. Then:
s1 ≈

div
TS s2 implies ∀π1 ∈ Paths(s1). (∃π2 ∈ Paths(s2). π1 ≈divTS π2)

Stutter equivalence versus ≈div

Let TS1 and TS2 be transition systems over AP. Then:

TS1 ≈
div TS2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stutter-bisimulation equivalence
with divergence

implies TS1 ≅ TS2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stutter-trace equivalence

whereas the reverse implication does not hold in general

CTL∗
∖X
equivalence and ≈div

For finite transition systems TSwithout terminal states, and s1, s2 in TS:

s1 ≈
div
TS s2 iff s1 ≡CTL∗

∖X
s2 iff s1 ≡CTL∖X s2

divergent-sensitive stutter bisimulation coincides with CTL∖X and CTL∗
∖X

equivalence

Comparative semantics

LTL
∖X equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 ≅ TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1 ⊑ TS2

CTL∗
∖X equivalence

CTL∗ equivalence LTL equivalence

Timed Automata

Time-critical systems

▸ Timing issues are of crucial importance for many systems, e.g.,
▸ landing gear controller of an airplane, railway crossing, robot

controllers
▸ steel production controllers, communication protocols

▸ In time-critical systems correctness depends on:
▸ not only on the logical result of the computation, but
▸ also on the time at which the results are produced

▸ How to model timing issues:
▸ discrete-time or continuous-time?

A discrete time domain

▸ Time has a discrete nature, i.e., time is advanced by discrete
steps

▸ time is modelled by naturals; actions can only happen at

natural time values
▸ a specific tick action is used to model the advance of one time

unit

⇒ delay between any two events is always a multiple of the

minimal delay of one time unit

▸ Properties can be expressed in traditional temporal logic
▸ the next-operator ‘‘measures’’ time
▸ two time units after being red, the light is green:

G (red ⇒ XXgreen)
▸ within two time units after red, the light is green:

G (red ⇒ (green ∨ Xgreen ∨ XXgreen))
▸ Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

A discrete time domain

▸ Main advantage: conceptual simplicity
▸ state graphs systems equipped with a ‘‘tick’’ transition suffice
▸ standard temporal logics can be used

⇒ traditional model-checking algorithms suffice

▸ Main limitations:
▸ (minimal) delay between any pair of actions is a multiple of an a

priori fixed minimal delay

⇒ difficult (or impossible) to determine this in practice

⇒ limits modeling accuracy

⇒ inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

.
t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

within four
time-units

is modeled by

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state

within π time-units?

Approach

▸ Restrict expressivity of the property language
▸ e.g., only allow reference to natural time units

Ô⇒ Timed CTL
▸ Model timed systems symbolically rather than explicitly

Ô⇒ Timed Automata

▸ Consider a finite quotient of the infinite state space
on-demand

▸ i.e., using an equivalence that depends on the property and the

timed automaton

Ô⇒ Region Automata

What is a timed automaton?

edge

location

off on

▸ a program graph with locations and edges

▸ a location is labeled with the valid atomic propositions

▸ taking an edge is instantaneous, i.e, consumes no time

What is a timed automaton?

y = 9

x ≥ 2

x ≥ 2

guard

off on

▸ equipped with real-valued clocks x, y, z, . . .

▸ clocks advance implicitly, all at the same speed

▸ logical constraints on clocks can be used as guards of actions

What is a timed automaton?

x ≥ 2
{ x }

clock reset

off on

y = 9

{ x }

x ≥ 2
{ x, y }

▸ clocks can be reset when taking an edge

▸ assumption:

all clocks are zero when entering the initial location initially

What is a timed automaton?

x ≥ 2
{ x }off on

y ≤ 9x ≤ 2

invariant

x ≥ 2
{ x, y }

y = 9

{ x }

▸ guards indicate when an edge may be taken

▸ a location invariant specifies the amount of time that may be
spent in a location

▸ before a location invariant becomes invalid, an edge must be

taken

A real-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

true

{ x }
true

{ x }

x ≤ 10

x ≤ 10 x ≤ 15

x ≤ 15

x = 15
{ x }

x = 15
{ x }

x = 10
{ x }

x = 10
{ x }

Clock constraints

▸ Clock constraints over set C of clocks are defined by:

g ∶∶= true ∣ x < c ∣ x − y < c ∣ x ≤ c ∣ x − y ≤ c ∣ ¬g ∣ g ∧ g

▸ where c ∈ N and clocks x, y ∈ C
▸ rational constants would do; neither reals nor addition of clocks!
▸ let CC(C) denote the set of clock constraints over C
▸ shorthands: x ≥ c denotes ¬ (x < c) and x ∈ [c1 , c2) or
c1 ≤ x < c2 denotes ¬(x < c1) & (x < c2)

▸ Atomic clock constraints do not contain true, ¬ and ∧
▸ let ACC(C) denote the set of atomic clock constraints over C

▸ Simplification: In the following, we assume constraints are

diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.

Timed automaton

A timed automaton is a tuple

TA = (Loc,Act, C,↝, Loc0, inv,AP, L) where:

▸ Loc is a finite set of locations.

▸ Loc0 ⊆ Loc is a set of initial locations

▸ C is a finite set of clocks

▸ L ∶ Loc→ 2AP is a labeling function for the locations

▸ ↝ ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation, and

▸ inv ∶ Loc→ CC(C) is an invariant-assignment function

Intuitive interpretation

▸ Edge ℓ
g∶α,C′−−−−−→ ℓ

′ means:
▸ action α is enabled once guard g holds
▸ when moving from location ℓ to ℓ

′
, any clock in C′ will be reset

to zero

▸ inv(ℓ) constrains the amount of time that may be spent in
location ℓ

▸ the location ℓmust be left before the invariant inv(ℓ) becomes

invalid

Guards versus location invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value
of x 3

2 ≤ x ≤ 3
{ x }

Guards versus location invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }

x ≤ 3

3

