Verification

Lecture 16

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a <u>bisimulation</u> on *TS* if for any $(q_1, q_2) \in \mathcal{R}$:

- $L(q_1) = L(q_2)$
- if $q'_1 \in Post(q_1)$ then there exists an $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$
- if $q'_2 \in Post(q_2)$ then there exists an $q'_1 \in Post(q_1)$ with $(q'_1, q'_2) \in \mathcal{R}$

 q_1 and q_2 are <u>bisimilar</u>, $q_1 \sim_{TS} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$q_1 \sim_{TS} q_2$ if and only if $TS_{q_1} \sim TS_{q_2}$

Bisimulation vs. CTL* and CTL equivalence

Let *TS* be a <u>finite</u> transition system and *s*, *s'* states in *TS* The following statements are equivalent: (1) $s \sim_{TS} s'$ (2) *s* and *s'* are CTL-equivalent, i.e., $s \equiv_{CTL} s'$ (3) *s* and *s'* are CTL*-equivalent, i.e., $s \equiv_{CTL*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

REVIEW: An algorithm for bisimulation quotienting

Input: Transition system $(S, Act, \rightarrow, I, AP, L)$ **Output:** Bisimulation quotient

- 1. $\Pi = S/\sim_{AP} \qquad (q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$
- 2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser
 - 2.1 pick a block *B* that is a splitter of Π than S/\sim_{TS} 2.2 Π = Refine(Π , *B*)

3. return Π

REVIEW: Simulation order on states

A <u>simulation</u> for $TS = (S, Act, \rightarrow, I, AP, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(q_1, q_2) \in \mathcal{R}$:

- 1. $L(q_1) = L(q_2)$
- 2. if $q'_1 \in Post(q_1)$

then there exists an $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$

 q_1 is simulated by q_2 , denoted by $q_1 \leq_{TS} q_2$, if there exists a simulation \mathcal{R} for *TS* with $(q_1, q_2) \in \mathcal{R}$

 $q_1 \leq_{TS} q_2$ if and only if $TS_{q_1} \leq TS_{q_2}$

 $q_1 \simeq_{\tau s} q_2$ if and only if $q_1 \preceq_{\tau s} q_2$ and $q_2 \preceq_{\tau s} q_1$

Similar but not bisimilar

 $TS_{left} \simeq TS_{right}$ but $TS_{left} \neq TS_{right}$

REVIEW: \simeq , \forall CTL^{*}, and \exists CTL^{*} equivalence

For finite transition system TS without terminal states:

$$\simeq_{\tau s} = \equiv_{\forall CTL^*} = \equiv_{\forall CTL} = \equiv_{\exists CTL^*} = \equiv_{\exists CTL}$$

REVIEW: Skeleton for simulation preorder checking

Require: finite transition system $TS = (S, Act, \rightarrow, I, AP, L)$ over AP **Ensure:** simulation order \leq_{TS}

 $\mathcal{R} := \{ (q_1, q_2) \mid L(q_1) = L(q_2) \};$

```
while \mathcal{R} is not a simulation do
choose (q_1, q_2) \in \mathcal{R}
such that (q_1, q_1') \in E, but for all q_2' with (q_2, q_2') \in E, (q_1', q_2') \notin \mathcal{R};
\mathcal{R} := \mathcal{R} \setminus \{ (q_1, q_2) \}
end while
return \mathcal{R}
```

The number of iterations is bounded above by $|S|^2$, since:

 $Q \times Q \supseteq \mathcal{R}_0 \not\supseteq \mathcal{R}_1 \not\supseteq \mathcal{R}_2 \not\supseteq \ldots \not\supseteq \mathcal{R}_n = \leq$

Let TS_1 and TS_2 be finite transition systems over *AP*. Then: 1. The problem whether

 $Traces_{fin}(TS_1) = Traces_{fin}(TS_2)$ is PSPACE-complete

2. The problem whether

 $Traces(TS_1) = Traces(TS_2)$ is PSPACE-complete

Overview implementation relations

	bisimulation equivalence	simulation order	trace equivalence
preservation of temporal-logical properties	CTL* CTL	∀CTL*/∃CTL* ∀CTL/∃CTL	LTL
checking equivalence	PTIME	PTIME	PSPACE- complete
graph minimization	PTIME	PTIME	

Motivation: Stutter Equivalence

- Bisimulation, simulation and trace equivalence are strong
 - each transition $s \rightarrow s'$ must be matched by a transition of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of "invisible" actions
 - each transition $s \rightarrow s'$ must be matched by a path fragment of a related state
 - matching means: ending in a state related to s', and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?

Stuttering equivalence

- ▶ $s \rightarrow s'$ in transition system *TS* is a <u>stutter step</u> if L(s) = L(s')
 - stutter steps do not affect the state labels of successor states
- Paths π_1 and π_2 are stuttering equivalent, denoted $\pi_1 \cong \pi_2$:
 - ▶ if there exists an infinite sequence $A_0A_1A_2...$ with $A_i \subseteq AP$ and
 - ▶ natural numbers $n_0, n_1, n_2, ..., m_0, m_1, m_2, ... \ge 1$ such that:

$$trace(\pi_1) = \underbrace{A_0 \dots A_0}_{n_0 \text{-times}} \underbrace{A_1 \dots A_1}_{n_1 \text{-times}} \underbrace{A_2 \dots A_2}_{n_2 \text{-times}} \dots$$

$$trace(\pi_2) = \underbrace{A_0, \dots, A_0}_{m_0 \text{-times}} \underbrace{A_1 \dots A_1}_{m_1 \text{-times}} \underbrace{A_2 \dots A_2}_{m_2 \text{-times}} \dots$$

 $\pi_1 \cong \pi_2$ if their traces only differ in their stutter steps i.e., if both their traces are of the form $A_0^+ A_1^+ A_2^+ \dots$ for $A_i \subseteq AP$

Stutter trace equivalence

Transition systems *TS_i* over *AP*, *i*=1, 2, are stutter-trace equivalent:

 $TS_1 \cong TS_2$ if and only if $TS_1 \equiv TS_2$ and $TS_2 \equiv TS_1$

where \sqsubseteq is defined by:

 $TS_1 \subseteq TS_2$ iff $\forall \sigma_1 \in Traces(TS_1) \ (\exists \sigma_2 \in Traces(TS_2). \ \sigma_1 \cong \sigma_2)$

clearly: $Traces(TS_1) = Traces(TS_2)$ implies $TS_1 \cong TS_2$, but not always the reverse

Example

The X operator

Stuttering equivalence does not preserve the validity of next-formulas:

 $\sigma_1 = ABBB...$ and $\sigma_2 = AAABBBB...$ for $A, B \subseteq AP$ and $A \neq B$ Then for $b \in B \setminus A$:

 $\sigma_1 \cong \sigma_2$ but $\sigma_1 \models Xb$ and $\sigma_2 \notin Xb$.

⇒ a logical characterization of \cong can only be obtained by omitting X in fact, it turns out that this is the only modal operator that is not preserved by \cong !

Stutter trace and LTL_x equivalence

For traces σ_1 and σ_2 over 2^{AP} it holds: $\sigma_1 \cong \sigma_2 \implies (\sigma_1 \vDash \varphi \text{ if and only if } \sigma_2 \vDash \varphi)$ for any LTL_{\x} formula φ over AP

 LTL_{X} denotes the class of LTL formulas without the next step operator X

Stutter trace and LTL_x equivalence

For transition systems TS_1 , TS_2 over AP (without terminal states): (a) $TS_1 \cong TS_2$ implies $TS_1 \equiv_{LTL_{x}} TS_2$ (b) if $TS_1 \equiv TS_2$ then for any LTL_{x} formula φ : $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

Stutter insensitivity

- ▶ LT property *P* is stutter-insensitive if $[\sigma]_{\cong} \subseteq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P:

 $TS_1 \cong TS_2$ implies $TS_1 \models P$ iff $TS_2 \models P$

- Moreover: $TS_1 \subseteq TS_2$ and $TS_2 \models P$ implies $TS_1 \models P$
- For any LTL_{\x} formula φ, LT property Words(φ) is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in $\text{LTL}_{\smallsetminus X}$
 - for LTL formula φ with $Words(\varphi)$ stutter insensitive:

there exists $\psi \in LTL_{X}$ such that $\psi \equiv_{LTL} \varphi$

Stutter bisimulation

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$ \mathcal{R} is a <u>stutter-bisimulation</u> for *TS* if for all $(s_1, s_2) \in \mathcal{R}$:

- 1. $L(s_1) = L(s_2)$
- 2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \ldots u_n s'_2$ with $n \ge 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
- 3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \ldots v_n s'_1$ with $n \ge 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

 s_1, s_2 are <u>stutter-bisimulation equivalent</u>, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

Example

${\cal R}$ inducing the following partitioning of the state space is a stutter bisimulation:

 $\{\{(n_1, n_2), (n_1, w_2), (w_1, n_2), (w_1, w_2)\}, \{(c_1, n_2), (c_1, w_2)\}, \{(n_1, c_2), (w_1, c_2)\}\}$

In fact, this is the coarsest stutter bisimulation, i.e., \mathcal{R} equals \approx_{TS}

Stutter-bisimilar transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i = 1, 2, be transition systems over APA <u>stutter bisimulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. \mathcal{R} and \mathcal{R}^{-1} are stutter-bisimulations for $TS_1 \oplus TS_2$, and

2.
$$\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R})$$
 and $\forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R}).$

 TS_1 and TS_2 are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation for (TS_1, TS_2)

Stutter bisimulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\approx_{TS} \subseteq S \times S$ let $TS/\approx^{div} = (S', \{\tau\}, \rightarrow', I', AP, L'),$ be the <u>quotient</u> of TS under \approx_S

where

- ▶ $S' = S / \approx_S = \{ [q]_{\approx_S} | q \in S \}$ with $[q]_{\approx_S} = \{ q' \in S | q \approx_S q' \}$ ▶ $I' = \{ [q]_{\approx_S} | q \in I \}$
- →' is defined by: $\frac{s \stackrel{\alpha}{\longrightarrow} s' \text{ and } s \not\neq s'}{[s]_{\approx} \stackrel{\tau}{\longrightarrow} '[s']_{\approx}}$ L'([q]_{≈s}) = L(q)
- note that (a) no self-loops occur in TS/\approx_s and (b) $TS \approx_s TS/\approx_s$

Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP:

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$
- But <u>not</u>: $TS_1 \approx TS_2$ implies $TS_1 \cong TS_2$!
- So:
 - bisimilar transition systems are trace equivalent
 - but stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - but \cong requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable

Stutter bisimulation does not preserve LTL_{xx}

$\frac{\text{stutter-trace inclu}}{TS_1 \sqsubseteq TS_2}$	<mark>sion:</mark> iff	$\forall \sigma_1 \in Traces(TS_1) \exists \sigma_2 \in Traces(TS_2). \ \sigma_1 \cong \sigma_2$	
$\frac{\text{stutter-trace equiv}}{TS_1} \cong TS_2$	<u>valence:</u> iff	$TS_1 \subseteq TS_2$ and $TS_2 \subseteq TS_1$	
stutter-bisimulation equivalence:			
$TS_1 \approx TS_2$	iff	there exists a stutter-bisimulation for (TS_1, TS_2)	
stutter-bisimulation equivalence with divergence: $TS_{-} \sim e^{div} TS_{-}$ iff there exists a divergence, consistive			
13 ₁ ≈ 132	111	stutter bisimulation for (TS_1, TS_2)	

Divergence sensitivity

- <u>Stutter paths</u> are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by stutter bisimulation
 - ⇒ stutter trace-equivalence (≅) and stutter bisimulation (≈) are incomparable
 - $\Rightarrow \approx$ and LTL_X equivalence are incomparable
- Stutter paths <u>diverge</u>: they never leave an equivalence class
- Remedy: only relate <u>divergent</u> states or <u>non-divergent</u> states
 - divergent state = a state that has a stutter path
 - ⇒ relate states only if they either both have stutter paths or none of them
- ► This yields divergence-sensitive stutter bisimulation (≈^{div})
 - $\Rightarrow \approx^{div}$ is strictly finer than \cong (and \approx)
 - $\Rightarrow \approx^{div}$ and CTL^{*}_X equivalence coincide

Divergence sensitivity

Let TS be a transition system and $\mathcal R$ an equivalence relation on S

- *s* is $\frac{\mathcal{R}\text{-divergent}}{\mathcal{R}\text{-divergent}}$ if there exists an infinite path fragment
 - $s s_1 s_2 \ldots \in Paths(s)$ such that $(s, s_j) \in \mathcal{R}$ for all j > 0
 - s is *R*-divergent if there is an infinite path starting in s that only visits [s]_{*R*}
- \mathcal{R} is divergence sensitive if for any $(s_1, s_2) \in \mathcal{R}$:

 s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent

R is divergence-sensitive if in any [s]_R either all or none of the states are *R*-divergent

Divergence-sensitive stutter bisimulation

 s_1, s_2 in TS are divergent stutter-bisimilar, denoted $s_1 \approx_{TS}^{div} s_2$, if:

 \exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$

 \approx_{TS}^{div} is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Quotient transition system under ~ div

For $TS = (S, Act, \rightarrow, I, AP, L)$ and divergent-sensitive stutter bisimulation $\approx^{div} \subseteq S \times S$,

 $TS/\approx^{div} = (S', \{\tau\}, \rightarrow', I', AP, L')$ is the <u>quotient</u> of TS under \approx^{div}

where

S', I' and L' are defined as usual (for eq. classes [s]_{div} under ≈^{div})
 →' is defined by:

$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \land s \not\approx^{div} s'}{[s]_{div} \stackrel{\tau}{\longrightarrow} '_{div} [s']_{div}} \quad \text{and} \quad \frac{s \text{ is } \approx^{div} \text{-divergent}}{[s]_{div} \stackrel{\tau}{\longrightarrow} '_{div} [s]_{div}}$$

note that TS \approx^{div} TS/ \approx^{div}

Example

 TS / \approx_{S}^{div}

≈^{div} on paths

For infinite path fragments $\pi_i = s_{0,i} s_{1,i} s_{2,i} \dots, i = 1, 2$, in *TS*:

 $\pi_1 \approx_{TS}^{div} \pi_2$

if and only if there exists an infinite sequence of indexes

$$0 = j_0 < j_1 < j_2 < \dots$$
 and $0 = k_0 < k_1 < k_2 < \dots$

with:

$$s_{j,1} \approx_{TS}^{div} s_{k,2}$$
 for all $j_{r-1} \leq j < j_r$ and $k_{r-1} \leq k < k_r$ with $r = 1, 2, \ldots$

Comparing paths by \approx^{div}

Let
$$TS = (S, Act, \rightarrow, I, AP, L), s_1, s_2 \in S$$
. Then:
 $s_1 \approx_{\tau_S}^{div} s_2$ implies $\forall \pi_1 \in Paths(s_1). (\exists \pi_2 \in Paths(s_2). \pi_1 \approx_{\tau_S}^{div} \pi_2)$

Stutter equivalence versus ≈^{div}

CTL^*_{x} equivalence and \approx^{div}

For finite transition systems *TS* without terminal states, and s_1 , s_2 in *TS*: $s_1 \approx_{TS}^{div} s_2$ iff $s_1 \equiv_{CTL_{\times X}} s_2$ iff $s_1 \equiv_{CTL_{\times X}} s_2$

divergent-sensitive stutter bisimulation coincides with $\text{CTL}_{\smallsetminus x}$ and $\text{CTL}_{\smallsetminus x}^*$ equivalence

Comparative semantics

Timed Automata

Time-critical systems

- Timing issues are of crucial importance for many systems, e.g.,
 - landing gear controller of an airplane, railway crossing, robot controllers
 - steel production controllers, communication protocols
- In time-critical systems correctness depends on:
 - not only on the logical result of the computation, but
 - also on the time at which the results are produced
- How to model timing issues:
 - discrete-time or continuous-time?

A discrete time domain

- Time has a <u>discrete</u> nature, i.e., time is advanced by discrete steps
 - time is modelled by naturals; actions can only happen at natural time values
 - a specific tick action is used to model the advance of one time unit
 - ⇒ delay between any two events is always a multiple of the minimal delay of one time unit
- Properties can be expressed in traditional temporal logic
 - the next-operator "measures" time
 - two time units after being red, the light is green: $G(red \Rightarrow XXgreen)$
 - within two time units after red, the light is green:

 $G(red \Rightarrow (green \lor X green \lor X X green))$

Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine

A discrete time domain

- Main advantage: conceptual simplicity
 - state graphs systems equipped with a "tick" transition suffice
 - standard temporal logics can be used
 - ⇒ traditional model-checking algorithms suffice
- Main limitations:
 - (minimal) delay between any pair of actions is a multiple of an <u>a</u> priori fixed minimal delay
 - ⇒ difficult (or impossible) to determine this in practice
 - ⇒ limits modeling accuracy
 - ⇒ inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state within π time-units?

Approach

- Restrict expressivity of the property language
 - e.g., only allow reference to natural time units

 \implies Timed CTL

Model timed systems <u>symbolically</u> rather than explicitly

→ Timed Automata

- Consider a <u>finite quotient</u> of the infinite state space on-demand
 - i.e., using an equivalence that depends on the property and the timed automaton

→ Region Automata

- a program graph with <u>locations</u> and <u>edges</u>
- a location is labeled with the valid <u>atomic propositions</u>
- taking an edge is instantaneous, i.e, consumes no time

- equipped with real-valued $\frac{\text{clocks}}{x, y, z, \dots}$
- clocks advance implicitly, all at the same speed
- logical constraints on clocks can be used as guards of actions

- clocks can be <u>reset</u> when taking an edge
- assumption:

all clocks are zero when entering the initial location initially

- guards indicate when an edge may be taken
- a location invariant specifies the amount of time that may be spent in a location
 - before a location invariant becomes invalid, an edge must be taken

A real-time coffee machine

Clock constraints

Clock constraints over set C of clocks are defined by:

 $g ::= \text{ true } \left| x < c \right| x - y < c \left| x \le c \right| x - y \le c \left| \neg g \right| g \land g$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let CC(C) denote the set of clock constraints over C
- ▶ shorthands: $x \ge c$ denotes $\neg (x < c)$ and $x \in [c_1, c_2)$ or $c_1 \le x < c_2$ denotes $\neg (x < c_1)$ & $(x < c_2)$
- ▶ Atomic clock constraints do not contain true, ¬ and ∧
 - let ACC(C) denote the set of atomic clock constraints over C
- Simplification: In the following, we assume constraints are diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.</p>

Timed automaton

A timed automaton is a tuple

$$TA = (Loc, Act, C, \sim, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- $L: Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\Rightarrow \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$ is a transition relation, and
- *inv* : $Loc \rightarrow CC(C)$ is an invariant-assignment function

Intuitive interpretation

- Edge $\ell \xrightarrow{g:\alpha,C'} \ell'$ means:
 - action α is enabled once guard g holds
 - \blacktriangleright when moving from location ℓ to ℓ' , any clock in C' will be reset to zero
- $inv(\ell)$ constrains the amount of time that may be spent in location ℓ
 - the location ℓ must be left before the invariant $inv(\ell)$ becomes invalid

Guards versus location invariants

Guards versus location invariants

Guards versus location invariants

