Verification

Lecture 15

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems A <u>bisimulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2$. $(s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1$. $(s_1, s_2) \in \mathcal{R}$
- 2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - 2.1 $L_1(s_1) = L_2(s_2)$
 - 2.2 if $s_1' \in Post(s_1)$ then there exists $s_2' \in Post(s_2)$ with $(s_1', s_2') \in \mathcal{R}$
 - 2.3 if $s_2' \in Post(s_2)$ then there exists $s_1' \in Post(s_1)$ with $(s_1', s_2') \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

REVIEW: Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a <u>bisimulation</u> on *TS* if for any $(q_1, q_2) \in \mathcal{R}$:

- $L(q_1) = L(q_2)$
- if $q_1' \in Post(q_1)$ then there exists an $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$
- if $q_2' \in Post(q_2)$ then there exists an $q_1' \in Post(q_1)$ with $(q_1', q_2') \in \mathcal{R}$

 q_1 and q_2 are <u>bisimilar</u>, $q_1 \sim_{75} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$$q_1 \sim_{TS} q_2$$
 if and only if $TS_{q_1} \sim TS_{q_2}$

REVIEW: CTL* equivalence

States q_1 and q_2 in TS (over AP) are CTL*-equivalent:

$$q_1 \equiv_{CTL^*} q_2$$
 if and only if $(q_1 \models \Phi \text{ iff } q_2 \models \Phi)$
for all CTL* state formulas over AP

$$TS_1 \equiv_{CTL^*} TS_2$$
 if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system and s, s' states in TS

The following statements are equivalent:

(1)
$$s \sim_{TS} s'$$

- (2) s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$
- (3) s and s' are CTL*-equivalent, i.e., $s \equiv_{CTI} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

REVIEW: The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - ► $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\uparrow TS_2$
- You even do not need to use an until-operator!
- ▶ To check $TS \models \Phi$, it suffices to check $TS / \sim \models \Phi$

Computing bisimulation quotients

A <u>partition</u> $\Pi = \{B_1, ..., B_k\}$ of *S* is a set of nonempty $(B_i \neq \emptyset)$ and pairwise disjoint blocks B_i that decompose S $(S = \biguplus_{i=1,...k} B_i)$. A partition defines an equivalence relation \sim

 $((q,q')\in \sim \Leftrightarrow \exists B_i \in \Pi. \ q,q' \in B_i).$

Likewise, an equivalence relation \sim defines a partition $\Pi = S/\sim$. A nonempty union $C = \biguplus_{i \in I} B_i$ of blocks is called a superblock.

A block B_i of a partition Π is called <u>stable</u> w.r.t. a set B if either $B_i \cap Pre(B) = \emptyset$, or $B_i \subseteq Pre(B)$.

$$(Pre(B) = \{ q \in S \mid Post(q) \cap B \neq \emptyset \})$$

A partition Π is called <u>stable</u> w.r.t. a set B if all blocks of Π are.

Lemma 1. A partition Π with consistently labeled blocks is stable

with respect to all of its (super)blocks if, and only if, it defines a

bisimulation relation.

Partition refinement

For two partitions $\Pi = \{B_1, \dots, B_k\}$ and $\Pi' = \{B'_1, \dots, B'_j\}$ of S, we say that Π is finer than Π' iff every block of Π' is a superblock of Π .

For a given partition $\Pi = \{B_1, \dots, B_k\}$, we call a (super)block C of Π a splitter of a block B_i / the partition Π if B_i / Π is not stable w.r.t. C.

Refine(B_i , C) denotes { B_i } if B_i is stable w.r.t. C, and { $B_i \cap Pre(C)$, $B_i \setminus Pre(C)$ } if C is a splitter of C.

Refine $(\Pi, C) = \biguplus_{i=1,...,k} \text{Refine}(B_i, C).$

Lemma 2. Refine(Π , C) is finer than Π .

An algorithm for bisimulation quotienting

Input: Transition system $(S, Act, \rightarrow, I, AP, L)$ **Output:** Bisimulation quotient

1.
$$\Pi = S/\sim_{AP} \qquad (q, q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

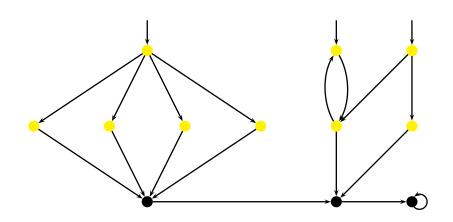
- 2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser
 - 2.1 pick a block B that is a splitter of Π than S/\sim_{TS}
 - 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π

1. $\Pi = S/\sim_{AP}$

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π

- loop invariant: Π is coarser than S/\sim_{TS}
- 2.1 pick a block B that is a splitter of Π
 - 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π

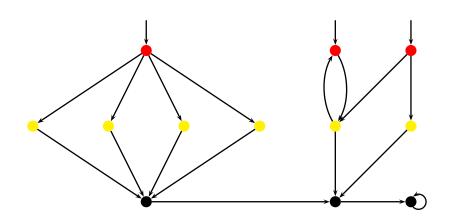


1. $\Pi = S/\sim_{AP}$

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π 2.2 $\Pi = \text{Refine}(\Pi, B)$
- 3. return Π

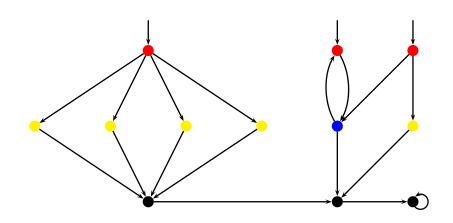


1. $\Pi = S/\sim_{AP}$

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π

- 2.1 pick a block B that is a splitter of Π
 - 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π

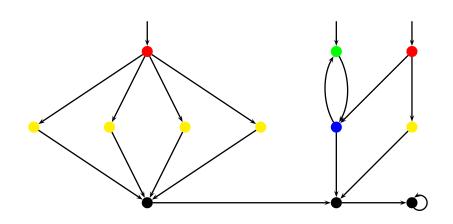


1. $\Pi = S/\sim_{AP}$

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
 - 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π

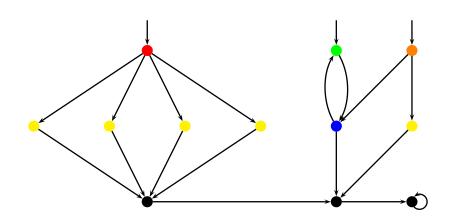


1. $\Pi = S/\sim_{AP}$

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π

- 2.1 pick a block B that is a splitter of Π
- 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π



Correctness and termination

1.
$$\Pi = S/\sim_{AP}$$

$$(q, q') \in \sim_{AP} \iff L(q) = L(q')$$

2. while some block $B \in \Pi$ is a splitter of Π

- loop invariant: Π is coarser than S/\sim_{TS}
- 2.1 pick a block B that is a splitter of Π
- 2.2 $\Pi = Refine(\Pi, B)$
- 3. return Π

Lemma 3. The algorithm terminates.

Lemma 4. The loop invariant holds initially.

Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/\sim_{TS} of the coarsest bisimulation \sim_{TS} .

Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be two transition systems over AP.

A <u>simulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall q_1 \in I_1 \exists q_2 \in I_2. (q_1, q_2) \in \mathcal{R}$
- 2. for all $(q_1, q_2) \in \mathcal{R}$ it holds:
 - 2.1 $L_1(q_1) = L_2(q_2)$
 - 2.2 if $q_1' \in Post(q_1)$ then there exists $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$

 $TS_1 \leq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

Simulation order

$$q_1
ightharpoonup q_1'$$
 $q_1
ightharpoonup q_1'$ $q_1
ightharpoonup q_1'$ $q_1
ightharpoonup q_2'$ $q_2
ightharpoonup q_2'$ $q_2
ightharpoonup q_2'$ $q_1
ightharpoonup q_1'$ $q_1
ightharpoonup q_1'$

The use of simulations

- As a notion of correctness for refinement
 - TS ≤ TS' whenever TS is obtained by deleting transitions from TS'
 - e.g., nondeterminism is resolved by choosing one alternative
- As a notion of correctness for abstraction
 - abstract from concrete values of certain program or control variables
 - use instead abstract values or ignore their value completely
 - used in e.g., software model checking of C and Java
 - formalized by an abstraction function f that maps s onto its abstraction f(s)

Abstraction function

- ► $f: S \to \widehat{S}$ is an <u>abstraction function</u> if $f(q) = f(q') \Rightarrow L(q) = L(q')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll |S|$
- Abstraction functions are useful for:
 - data abstraction: abstract from values of program or control variables

f: concrete data domain \rightarrow abstract data domain

 predicate abstraction: use predicates over the program variables

f: state \rightarrow valuations of the predicates

 localization reduction: partition program variables into visible and invisible

f: all variables \rightarrow visible variables

Abstract transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

$$TS_f = (\widehat{S}, Act, \rightarrow_f, I_f, AP, L_f),$$
 the abstraction of TS under f

where

- ► →_f is defined by: $\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{\alpha}_{f} f(s')}$
- ▶ $I_f = \{ f(s) \mid s \in I \}$
- ► $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

 $\mathcal{R} = \{ (s, f(s)) \mid s \in S \} \text{ is a simulation for } (TS, TS_f)$

Simulation order on paths

Whenever we have:

this can be completed to

the proof of this fact is by induction on the length of the path

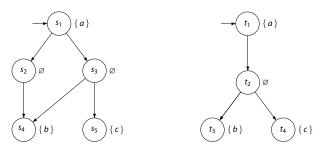
Simulation is a pre-order

≤ is a preorder, i.e., reflexive and transitive

Simulation equivalence

 TS_1 and TS_2 are <u>simulation equivalent</u>, denoted $TS_1 \simeq TS_2$, if $TS_1 \leq TS_2$ and $TS_2 \leq TS_1$

Similar but not bisimilar



TS_{left} ≈ TS_{right} but TS_{left} ∱ TS_{right}

Simulation order on states

A <u>simulation</u> for $TS = (S, Act, \rightarrow, I, AP, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(q_1, q_2) \in \mathcal{R}$:

- 1. $L(q_1) = L(q_2)$
- 2. if $q_1' \in Post(q_1)$ then there exists an $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$

 q_1 is <u>simulated by</u> q_2 , denoted by $q_1 \leq_{TS} q_2$, if there exists a simulation \mathcal{R} for TS with $(q_1, q_2) \in \mathcal{R}$

$$q_1 \leq_{TS} q_2$$
 if and only if $TS_{q_1} \leq TS_{q_2}$

$$q_1 \simeq_{\tau s} q_2$$
 if and only if $q_1 \leq_{\tau s} q_2$ and $q_2 \leq_{\tau s} q_1$

Simulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let $TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L'),$ the quotient of TS under \simeq

where

►
$$S' = S/\simeq \{ [s]_{\simeq} | s \in S \} \text{ and } I' = \{ [s]_{\simeq} | s \in I \}$$

$$\rightarrow$$
 ' is defined by:

 $L'(\lceil s \rceil_{\simeq}) = L(s)$

$$\rightarrow' \text{ is defined by:} \qquad \frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!

Universal fragment of CTL*

∀CTL* state-formulas are formed according to:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid A \varphi$$

where $a \in AP$ and φ is a path-formula

∀CTL* path-formulas are formed according to:

$$\varphi ::= \Phi \mid X \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \cup \varphi_2 \mid \varphi_1 R \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

Universal CTL* contains LTL

For every LTL formula there exists an equivalent ∀CTL* formula

Proof: Bring LTL formula into positive normal form (PNF).

Simulation order and ∀CTL*

Let TS be a finite transition system (without terminal states) and q, q' states in TS.

The following statements are equivalent:

(1)
$$q \leq_{TS} q'$$

- (2) for all $\forall \mathsf{CTL}^*$ -formulas $\Phi : q' \models \Phi$ implies $q \models \Phi$
- (3) for all \forall CTL-formulas Φ : $q' \models \Phi$ implies $q \models \Phi$

proof is carried out in three steps: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Existential fragment of CTL*

∃CTL* state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \; \middle| \; \mathsf{false} \; \middle| \; a \; \middle| \; \neg a \; \middle| \; \Phi_1 \; \wedge \; \Phi_2 \; \middle| \; \Phi_1 \; \vee \; \Phi_2 \; \middle| \; \exists \varphi$$

where $a \in AP$ and φ is a path-formula

∃CTL* path-formulas are formed according to:

$$\varphi ::= \Phi \mid X \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 U \varphi_2 \mid \varphi_1 R \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

Simulation order and ∃CTL*

Let TS be a finite transition system (without terminal states) and q, q' states in TS.

The following statements are equivalent:

(1)
$$q \leq_{TS} q'$$

- (2) for all $\exists CTL^*$ -formulas Φ : $q \models \Phi$ implies $q' \models \Phi$
- (3) for all \exists CTL-formulas Φ : $q \models \Phi$ implies $q' \models \Phi$

\simeq , \forall CTL*, and \exists CTL* equivalence

For finite transition system *TS* without terminal states:

$$\simeq_{TS} = \equiv_{\forall \mathsf{CTL}^*} = \equiv_{\forall \mathsf{CTL}} = \equiv_{\exists \mathsf{CTL}^*} = \equiv_{\exists \mathsf{CTL}}$$

Skeleton for simulation preorder checking

Require: finite transition system $TS = (S, Act, \rightarrow, I, AP, L)$ over AP **Ensure:** simulation order \leq_{TS}

```
\mathcal{R} \coloneqq \{ (q_1, q_2) \mid L(q_1) = L(q_2) \};
\text{while } \mathcal{R} \text{ is not a simulation } \textbf{do}
\text{choose } (q_1, q_2) \in \mathcal{R}
\text{such that } (q_1, q_1') \in E, \text{ but for all } q_2' \text{ with } (q_2, q_2') \in E, (q_1', q_2') \notin \mathcal{R};
\mathcal{R} \coloneqq \mathcal{R} \setminus \{ (q_1, q_2) \}
\text{end while}
\text{return } \mathcal{R}
```

The number of iterations is bounded above by $|S|^2$, since:

$$Q \times Q \supseteq \mathcal{R}_0 \not\supseteq \mathcal{R}_1 \not\supseteq \mathcal{R}_2 \not\supseteq \dots \not\supseteq \mathcal{R}_n = \leq$$