Verification

Lecture 14

Bernd Finkbeiner Peter Faymonville Michael Gerke

Coming up in two weeks...

Midterm Exam will take place on Dec 20th, 4pm-7pm Günter-Hotz-Hörsaal (building E2 2, formerly called Audimo) **Open Book** Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AG p iff the following formula is satisfiable:

$$f_{l}(\vec{v}_{0}) \wedge f_{\rightarrow}(\vec{v}_{0},\vec{v}_{1}) \wedge f_{\rightarrow}(\vec{v}_{1},\vec{v}_{2}) \wedge \ldots + f_{\rightarrow}(\vec{v}_{k-2},\vec{v}_{k-1}) \wedge (\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1})$$

REVIEW: Automata-based approach

Automata-based approach:

- Translate LTL formula $\neg \varphi$ to Büchi automaton
- Build product with transition system
- Encode all paths that start in initial state and are k steps long
- Require that path contains loop with accepting state

$$f_{I}(\vec{v}_{0}) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}(\vec{v}_{i},\vec{v}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\left(\vec{v}_{i} = \vec{v}_{k} \right) \wedge \bigvee_{j=i}^{k-1} f_{F}(\vec{v}_{j}) \right)$$

Formula size: $O(k \cdot |TS| \cdot 2^{|\varphi|})$

REVIEW: Fixpoint-based translation

 ψ TS $\wedge \psi$ loop $\wedge [\psi]_0$

$$\Psi_{\mathsf{TS}} = f_l(\vec{v}_0) \land \bigwedge_{i=0}^{k-2} f_{\rightarrow}(\vec{v}_i, \vec{v}_{i+1})$$

- ψ_{loop} : loop constraint, ensures the existence of exactly one loop
- $[\varphi]_0$: fixpoint formula, ensures that LTL formula holds

Formula size: $O(k \cdot (|TS| + |\varphi|))$

REVIEW: The Completeness Threshold

The bound k is increased incrementally until

- a counterexample is found, or
- the problem becomes intractable due to the complexity of the SAT problem
- k reaches a precomputed threshold that guarantees that there is no counterexample
- \rightarrow this threshold is called the completeness threshold CL.

The completeness threshold

- Computing CL is as hard as model checking
- Idea: Compute an overapproximation of CL based on the graph structure

Basic notions:

- Diameter D: Longest shortest path between any two reachable states
- Recurrence diameter RD: Longest loop-free path between any two reachable states
- Initialized diameter D¹: Longest shortest path between some initial state and some reachable state
- Initialized recurrence diameter RD¹: Longest loop-free path between some initial state and some reachable state

Completeness thresholds

- For $\Box p$ properties, $CT \leq D^{l}$.
- For $\Diamond p$ properties, $CT \leq RD^{l} + 1$.
- ► For general LTL properties, $CT \le \min(RD^{l} + 1, D^{l} + D)$ (where D, D^{l}, RD, RD^{l} refer to the product graph)

Complexity

- ▶ *k* chosen as min(RD' + 1, D' + D) is exponential in number of state variables
- Size of SAT instance is $O(k \cdot (|TS| + |\varphi|))$
- SAT is solved in exponential time
- ⇒ double exponential in number of state variables
 (Compare: BDD-based model checking is single-exponential)
 - In practice, bounded model checking is very successful
 - Finds shallow errors fast
 - ▶ In practice, *RD*, *D* are often not exponential

Implementation Relations

Implementation relations

- A binary relation on transition systems
 - when does a transition systems correctly implement another?
- Important for system synthesis
 - stepwise <u>refinement</u> of a system specification TS into an "implementation" TS'
- Important for system <u>analysis</u>
 - use the implementation relation as a means for <u>abstraction</u>
 - ▶ replace $TS \models \varphi$ by $TS' \models \varphi$ where $|TS'| \ll |TS|$ such that:

$$TS \vDash \varphi \text{ iff } TS' \vDash \varphi \quad \text{or} \quad TS' \vDash \varphi \implies TS \vDash \varphi$$

- ⇒ Focus on state-based bisimulation and simulation
 - Iogical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems A <u>bisimulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2$. $(s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1$. $(s_1, s_2) \in \mathcal{R}$
- 2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:

2.1 $L_1(s_1) = L_2(s_2)$

2.2 if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$

2.3 if $s'_2 \in Post(s_2)$ then there exists $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

	q 1	\rightarrow	q_1'		q 1	\rightarrow	q_1'
	\mathcal{R}			can be completed to	${\cal R}$		\mathcal{R}
	q ₂				q ₂	\rightarrow	q '_2
and							
	q 1				q 1	\rightarrow	q_1'
	\mathcal{R}			can be completed to	${\mathcal R}$		${\cal R}$
	q 2	\rightarrow	q_2'		q 2	\rightarrow	q_2'

Example (1)

 $\mathcal{R} = \left\{ (s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4) \right\}$

is a bisimulation for (TS_1, TS_2) where $AP = \{ pay, beer, sprite \}$

Example (2)

For any transition systems *TS*, *TS*₁, *TS*₂ and *TS*₃ over *AP*:

TS ~ TS (reflexivity) TS₁ ~ TS₂ implies $TS_2 ~ TS_1$ (symmetry) TS₁ ~ TS₂ and $TS_2 ~ TS_3$ implies $TS_1 ~ TS_3$ (transitivity)

Bisimulation on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$

 \mathcal{R}
 t_0

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4....$$
$$\mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R}$$
$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4...$$

proof: by induction on index *i* of state *s_i*

Bisimulation vs. trace equivalence

$TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a <u>bisimulation</u> on *TS* if for any $(q_1, q_2) \in \mathcal{R}$:

- $L(q_1) = L(q_2)$
- if $q'_1 \in Post(q_1)$ then there exists an $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$
- if $q'_2 \in Post(q_2)$ then there exists an $q'_1 \in Post(q_1)$ with $(q'_1, q'_2) \in \mathcal{R}$

 q_1 and q_2 are <u>bisimilar</u>, $q_1 \sim_{TS} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$q_1 \sim_{TS} q_2$ if and only if $TS_{q_1} \sim TS_{q_2}$

Coarsest bisimulation

 $\sim_{\mbox{\scriptsize TS}}$ is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For
$$TS = (S, Act, \rightarrow, I, AP, L)$$
 and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let

 $TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L'), \text{ the <u>quotient</u> of TS under } \sim_{TS}$

where

►
$$S' = S/\sim_{TS} = \{ [s]_{\sim} | s \in S \}$$
 with $[s]_{\sim} = \{ s' \in S | s \sim_{TS} s' \}$
► \rightarrow' is defined by: $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau} s' [s']_{\sim}}$

- $\bullet I' = \{ [s]_{\sim} \mid s \in I \}$
- $L'([s]_{\sim}) = L(s)$

The Bakery algorithm

Example path fragment

process P ₁	process P ₂	y 1	y ₂	effect
<i>n</i> ₁	<i>n</i> ₂	0	0	P ₁ requests access to critical section
<i>w</i> ₁	<i>n</i> ₂	1	0	P_2 requests access to critical section
<i>w</i> ₁	<i>W</i> ₂	1	2	<i>P</i> ₁ enters the critical section
C ₁	<i>w</i> ₂	1	2	P_1 leaves the critical section
<i>n</i> ₁	<i>w</i> ₂	0	2	<i>P</i> ₁ requests access to critical section
<i>w</i> ₁	<i>w</i> ₂	3	2	P_2 enters the critical section
<i>w</i> ₁	c ₂	3	2	P_2 leaves the critical section
<i>w</i> ₁	<i>n</i> ₂	3	0	P_2 requests access to critical section
<i>w</i> ₁	<i>w</i> ₂	3	4	P_2 enters the critical section

Data abstraction

Function *f* maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs} Let $s = \langle \ell_1, \ell_2, y_1 = b_1, y_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$ Then:

$$f(s) = \begin{cases} \langle \ell_1, \ell_2, y_1 = 0, y_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 = 0, y_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, y_1 > 0, y_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 > y_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, y_2 > y_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{ (s, f(s)) | s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ noncrit_i, wait_i, crit_i \mid i = 1, 2 \}$

Bisimulation quotient

 $TS_{Bak}^{abs} = TS_{Bak} / \sim \text{ for } AP = \{ crit_1, crit_2 \}$

Remarks

- In this example, data abstraction yields a bisimulation relation
 - (typically, only a simulation relation is obtained, more later)
- $TS_{Bak}^{abs} \vDash \varphi$ with, e.g.,:
 - $\Box(\neg crit_1 \lor \neg crit_2)$ and (GF wait_1 \Rightarrow GF crit_1) \land (GF wait_2 \Rightarrow GF crit_2)
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \vDash \varphi$
- Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$

REVIEW: Syntax of CTL*

CTL* state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \mathsf{E}\varphi$$

where $a \in AP$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$\varphi ::= \Phi \left| \begin{array}{c} \varphi_1 \land \varphi_2 \end{array} \right| \left| \neg \varphi \right| X \varphi \left| \begin{array}{c} \varphi_1 \cup \varphi_2 \end{array} \right|$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

CTL* equivalence

States q_1 and q_2 in *TS* (over *AP*) are CTL*-equivalent: $q_1 \equiv_{CTL^*} q_2$ if and only if $(q_1 \models \Phi \text{ iff } q_2 \models \Phi)$ for all CTL* state formulas over *AP*

 $TS_1 \equiv_{CTL^*} TS_2$ if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let *TS* be a <u>finite</u> state graph and *s*, *s'* states in *TS* The following statements are equivalent: (1) $s \sim_{TS} s'$ (2) *s* and *s'* are CTL-equivalent, i.e., $s \equiv_{CTL} s'$ (3) *s* and *s'* are CTL*-equivalent, i.e., $s \equiv_{CTL*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $TS_1 \models \Phi$ and $TS_2 \notin \Phi$ implies $TS_1 \not \vdash TS_2$
- You even do not need to use an until-operator!
- To check $TS \models \Phi$, it suffices to check $TS / \sim \models \Phi$