Verification

Lecture 14

Bernd Finkbeiner Peter Faymonville Michael Gerke

Coming up in two weeks...
Midterm Exam will take place on Dec 20th, 4pm-7pm
Günter-Hotz-Hörsaal (building E2 2, formerly called Audimo) Open Book

REVIEW: Bounded model checking

Search for counterexamples of bounded length
There exists a counterexample of length k to the invariant AGp iff the following formula is satisfiable:
$f_{l}\left(\vec{v}_{0}\right) \wedge f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right) \wedge f_{\rightarrow}\left(\vec{v}_{1}, \vec{v}_{2}\right) \wedge \ldots f_{\rightarrow}\left(\vec{v}_{k-2}, \vec{v}_{k-1}\right) \wedge\left(\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1}\right)$

REVIEW: Automata-based approach

Automata-based approach:

- Translate LTL formula $\neg \varphi$ to Büchi automaton
- Build product with transition system
- Encode all paths that start in initial state and are k steps long
- Require that path contains loop with accepting state

$$
f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right) \wedge \bigvee_{i=0}^{k-1}\left(\left(\vec{v}_{i}=\vec{v}_{k}\right) \wedge \bigvee_{j=i}^{k-1} f_{F}\left(\vec{v}_{j}\right)\right)
$$

Formula size: $O\left(k \cdot|T S| \cdot 2^{|\varphi|}\right)$

REVIEW: Fixpoint-based translation

$$
\psi_{T S} \wedge \psi_{\text {loop }} \wedge[\psi]_{0}
$$

- $\psi_{T S}=f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right)$
- $\psi_{\text {Ioop }}$: loop constraint, ensures the existence of exactly one loop
- $[\varphi]_{0}$: fixpoint formula, ensures that LTL formula holds

Formula size: $O(k \cdot(|T S|+|\varphi|))$

REVIEW: The Completeness Threshold

The bound k is increased incrementally until

- a counterexample is found, or
- the problem becomes intractable due to the complexity of the SAT problem
- k reaches a precomputed threshold that guarantees that there is no counterexample
\rightarrow this threshold is called the completeness threshold CL.

The completeness threshold

- Computing $C L$ is as hard as model checking
- Idea: Compute an overapproximation of CL based on the graph structure

Basic notions:

- Diameter D: Longest shortest path between any two reachable states
- Recurrence diameter RD: Longest loop-free path between any two reachable states
- Initialized diameter D^{\prime} : Longest shortest path between some initial state and some reachable state
- Initialized recurrence diameter $R D^{\prime}$: Longest loop-free path between some initial state and some reachable state

Completeness thresholds

- For $\square p$ properties, $C T \leq D^{\prime}$.
- For $\diamond p$ properties, $C T \leq R D^{\prime}+1$.
- For general LTL properties, $C T \leq \min \left(R D^{\prime}+1, D^{\prime}+D\right)$ (where $D, D^{\prime}, R D, R D^{\prime}$ refer to the product graph)

Complexity

- k chosen as $\min \left(R D^{\prime}+1, D^{\prime}+D\right)$ is exponential in number of state variables
- Size of SAT instance is $O(k \cdot(|T S|+|\varphi|))$
- SAT is solved in exponential time
\Rightarrow double exponential in number of state variables
(Compare: BDD-based model checking is single-exponential)
- In practice, bounded model checking is very successful
- Finds shallow errors fast
- In practice, $R D, D$ are often not exponential

Implementation Relations

Implementation relations

- A binary relation on transition systems
- when does a transition systems correctly implement another?
- Important for system synthesis
- stepwise refinement of a system specification TS into an "implementation" TS'
- Important for system analysis
- use the implementation relation as a means for abstraction
- replace $T S \vDash \varphi$ by $T S^{\prime} \vDash \varphi$ where $\left|T S^{\prime}\right| \ll|T S|$ such that:

$$
T S \vDash \varphi \text { iff } T S^{\prime} \vDash \varphi \quad \text { or } \quad T S^{\prime} \vDash \varphi \Rightarrow T S \vDash \varphi
$$

\Rightarrow Focus on state-based bisimulation and simulation

- logical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right), i=1,2$, be transition systems A bisimulation for $\left(T S_{1}, T S_{2}\right)$ is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ such that:

1. $\forall s_{1} \in I_{1} \exists s_{2} \in I_{2} .\left(s_{1}, s_{2}\right) \in \mathcal{R}$ and $\forall s_{2} \in I_{2} \exists s_{1} \in I_{1} .\left(s_{1}, s_{2}\right) \in \mathcal{R}$
2. for all states $s_{1} \in S_{1}, s_{2} \in S_{2}$ with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$ it holds:
$2.1 \quad L_{1}\left(s_{1}\right)=L_{2}\left(s_{2}\right)$
2.2 if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ then there exists $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
2.3 if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ then there exists $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
$T S_{1}$ and $T S_{2}$ are bisimilar, denoted $T S_{1} \sim T S_{2}$, if there exists a bisimulation for $\left(T S_{1}, T S_{2}\right)$

Bisimulation equivalence

Example (1)

$$
\mathcal{R}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}
$$

is a bisimulation for $\left(T S_{1}, T S_{2}\right)$ where $A P=\{$ pay, beer, sprite $\}$

Example (2)

$T S_{1} \nleftarrow T S_{3}$ for $A P=\{$ pay, beer, sprite $\}$
But: $\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{1}, u_{2}\right),\left(s_{2}, u_{3}\right),\left(s_{2}, u_{4}\right),\left(s_{3}, u_{3}\right),\left(s_{3}, u_{4}\right)\right\}$ is a bisimulation for $\left(T S_{1}, T S_{3}\right)$ for $A P=\{$ pay, drink $\}$

~ is an equivalence

For any transition systems $T S, T S_{1}, T S_{2}$ and $T S_{3}$ over $A P$:
$T S \sim T S$ (reflexivity)
$T S_{1} \sim T S_{2}$ implies $T S_{2} \sim T S_{1}$ (symmetry)
$T S_{1} \sim T S_{2}$ and $T S_{2} \sim T S_{3}$ implies $T S_{1} \sim T S_{3}$ (transitivity)

Bisimulation on paths

Whenever we have:

$$
\begin{aligned}
& s_{0} \quad \rightarrow \quad s_{1} \quad \rightarrow \quad s_{2} \quad \rightarrow \quad s_{3} \quad \rightarrow \quad s_{4} \ldots \ldots \\
& \mathcal{R} \\
& t_{0}
\end{aligned}
$$

this can be completed to

$$
\begin{array}{lllllllll}
s_{0} & \rightarrow & s_{1} & \rightarrow & s_{2} & \rightarrow & s_{3} & \rightarrow & s_{4} \ldots \ldots \\
\mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\
t_{0} & \rightarrow & t_{1} & \rightarrow & t_{2} & \rightarrow & t_{3} & \rightarrow & t_{4} \ldots \ldots
\end{array}
$$

proof: by induction on index i of state s_{i}

Bisimulation vs. trace equivalence

$$
T S_{1} \sim T S_{2} \text { implies } \operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)
$$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a bisimulation on $T S$ if for any $\left(q_{1}, q_{2}\right) \in \mathcal{R}$:

- $L\left(q_{1}\right)=L\left(q_{2}\right)$
- if $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ then there exists an $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
- if $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ then there exists an $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
q_{1} and q_{2} are bisimilar, $q_{1} \sim_{\text {TS }} q_{2}$, if $\left(q_{1}, q_{2}\right) \in \mathcal{R}$ for some bisimulation \mathcal{R} for $T S$

$$
q_{1} \sim_{\text {TS }} q_{2} \text { if and only if } T S_{q_{1}} \sim T S_{q_{2}}
$$

Coarsest bisimulation

$\sim_{T S}$ is an equivalence and the coarsest bisimulation for $T S$

Quotient transition system

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and bisimulation $\sim_{T S} \subseteq S \times S$ on $T S$ let

$$
T S / \sim_{T S}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right), \quad \text { the quotient of } T S \text { under } \sim_{T S}
$$

where

- $S^{\prime}=S / \sim_{\text {Ts }}=\left\{[s]_{\sim} \mid s \in S\right\}$ with $[s]_{\sim}=\left\{s^{\prime} \in S \mid s \sim_{\text {Ts }} s^{\prime}\right\}$
$\rightarrow \rightarrow^{\prime}$ is defined by: $\frac{s \xrightarrow{\alpha} s^{\prime}}{[s]_{\sim} \xrightarrow{\tau}\left[s^{\prime}\right]_{\sim}}$
- $I^{\prime}=\left\{[s]_{\sim} \mid s \in I\right\}$
- $L^{\prime}\left([s]_{\sim}\right)=L(s)$

The Bakery algorithm

$P_{1}::\left[\begin{array}{l}\text { loop forever do } \\ {\left[\begin{array}{ll}n_{1}: & y_{1}:=y_{2}+1 \\ w_{1}: & \text { await }\left(y_{2}=0 \vee y_{1}<y_{2}\right) \\ c_{1}: & \text { critical } \\ & y_{1}:=0\end{array}\right]}\end{array}\right] \quad \| \quad P_{2}::\left[\begin{array}{l}\text { loop forever do } \\ {\left[\begin{array}{ll}\text { noncritical } \\ n_{1}: & y_{2}:=y_{1}+1 \\ w_{1}: & \text { await }\left(y_{1}=0 \vee y_{2}<y_{1}\right) \\ c_{1}: & \text { critical } \\ & y_{2}:=0\end{array}\right]}\end{array}\right]$

Example path fragment

process P_{1}	process P_{2}	y_{1}	y_{2}	effect
n_{1}	n_{2}	0	0	P_{1} requests access to critical section
w_{1}	n_{2}	1	0	P_{2} requests access to critical section
W_{1}	W_{2}	1	2	P_{1} enters the critical section
c_{1}	W_{2}	1	2	P_{1} leaves the critical section
n_{1}	W_{2}	0	2	P_{1} requests access to critical section
W_{1}	W_{2}	3	2	P_{2} enters the critical section
w_{1}	c_{2}	3	2	P_{2} leaves the critical section
w_{1}	n_{2}	3	0	P_{2} requests access to critical section
w_{1}	W_{2}	3	4	P_{2} enters the critical section
\ldots	\ldots	\ldots

Data abstraction

Function f maps a reachable state of $T S_{\text {Bak }}$ onto an abstract one in $T S_{\text {Bak }}^{a b s}$ Let $s=\left\langle\ell_{1}, \ell_{2}, y_{1}=b_{1}, y_{2}=b_{2}\right\rangle$ be a state of $T S_{B a k}$ with $\ell_{i} \in\left\{n_{i}, w_{i}, c_{i}\right\}$ and $b_{i} \in \mathbb{N}$
Then:

$$
f(s)= \begin{cases}\left\langle\ell_{1}, \ell_{2}, y_{1}=0, y_{2}=0\right\rangle & \text { if } b_{1}=b_{2}=0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}=0, y_{2}>0\right\rangle & \text { if } b_{1}=0 \text { and } b_{2}>0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}>0, y_{2}=0\right\rangle & \text { if } b_{1}>0 \text { and } b_{2}=0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}>y_{2}>0\right\rangle & \text { if } b_{1}>b_{2}>0 \\ \left\langle\ell_{1}, \ell_{2}, y_{2}>y_{1}>0\right\rangle & \text { if } b_{2}>b_{1}>0\end{cases}
$$

It follows: $\mathcal{R}=\{(s, f(s)) \mid s \in S\}$ is a bisimulation for $\left(T S_{B a k}, T S_{B a k}^{a b s}\right)$
for any subset of $A P=\left\{\right.$ noncrit $_{i}$, wait $_{i}$, crit $\left._{i} \mid i=1,2\right\}$

Bisimulation quotient

Remarks

- In this example, data abstraction yields a bisimulation relation
- (typically, only a simulation relation is obtained, more later)
- $T S_{B a k}^{a b s} \vDash \varphi$ with, e.g.,.
- $\square\left(\neg\right.$ crit $_{1} \vee \neg$ crit $\left._{2}\right)$ and (GF wait ${ }_{1} \Rightarrow$ GFrrit $\left._{1}\right) \wedge\left(\right.$ GF wait ${ }_{2} \Rightarrow$ GF crit $\left._{2}\right)$
- Since $T S_{\text {Bak }}^{a b s} \sim T S_{\text {Bak }}$, it follows $T S_{\text {Bak }} \vDash \varphi$
- Note: $\operatorname{Traces}\left(T S_{B a k}^{a b s}\right)=\operatorname{Traces}\left(T S_{B a k}\right)$

REVIEW: Syntax of CTL*

CTL* state-formulas are formed according to:

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \mathrm{E} \varphi
$$

where $a \in A P$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\mathrm{X} \varphi| \varphi_{1} \cup \varphi_{2}
$$

where Φ is a state-formula, and φ, φ_{1} and φ_{2} are path-formulas

CTL* equivalence

States q_{1} and q_{2} in $T S$ (over $A P$) are CTL* -equivalent:

$$
q_{1} \equiv_{c \tau L^{*}} q_{2} \quad \text { if and only if } \quad\left(q_{1} \vDash \Phi \text { iff } q_{2} \vDash \Phi\right)
$$

for all CTL* state formulas over $A P$
$T S_{1} \equiv_{C L^{*}} T S_{2} \quad$ if and only if $\quad\left(T S_{1} \vDash \Phi\right.$ iff $\left.T S_{2} \vDash \Phi\right)$
for any sublogic of CTL* ${ }^{*}$, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let $T S$ be a finite state graph and s, s^{\prime} states in $T S$
 The following statements are equivalent:
 $$
\text { (1) } s \sim_{T S} s^{\prime}
$$
 (2) s and s^{\prime} are CTL-equivalent, i.e., $s \equiv_{C T L} s^{\prime}$
 (3) s and s^{\prime} are $C T L^{*}$-equivalent, i.e., $s \equiv_{C T L^{*}} s^{\prime}$

this is proven in three steps: $\equiv_{C T L} \subseteq \sim \subseteq \equiv_{C T L} \subseteq \equiv_{C T L}$
important: equivalence is also obtained for any sub-logic containing \neg, \wedge and X

The importance of this result

- CTL and CTL* equivalence coincide
- despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
- and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
- $T S_{1} \vDash \Phi$ and $T S_{2} \neq \Phi$ implies $T S_{1} \notin T S_{2}$
- You even do not need to use an until-operator!
- To check $T S \vDash \Phi$, it suffices to check $T S / \sim \vDash \Phi$

