Verification

Lecture 13

Bernd Finkbeiner
Peter Faymonville Michael Gerke

REVIEW: (explicit-state) LTL model checking

REVIEW: (explicit-state) CTL model checking

```
{compute the sets Sat(\Phi)={q\inS|q\vDash\Phi}}
for all i\leq| || do
    for all }\Psi\in\operatorname{Sub}(\Phi)\mathrm{ with }|\Psi|=i\mathrm{ do
        compute Sat(\Psi) from Sat( }\mp@subsup{\Psi}{}{\prime}){\mathrm{ for maximal proper }\mp@subsup{\Psi}{}{\prime}\in\operatorname{Sub}(\Psi)
    end for
end for
return I \subseteqSat(\Phi)
```

$$
\begin{aligned}
\operatorname{Sat}(\text { true }) & =Q \\
\operatorname{Sat}(a) & =\{q \in Q \mid a \in L(q)\}, \text { for any } a \in A P \\
\operatorname{Sat}(\Phi \wedge \Psi) & =\operatorname{Sat}(\Phi) \cap \operatorname{Sat}(\Psi) \\
\operatorname{Sat}(\neg \Phi) & =Q \backslash \operatorname{Sat}(\Phi) \\
\operatorname{Sat}(\mathrm{EX} \Phi) & =\{q \in Q \mid \operatorname{Post}(q) \cap \operatorname{Sat}(\Phi) \neq \varnothing\}
\end{aligned}
$$

REVIEW: ROBDDs

- Binary decision diagram (OBDD) is a directed graph over $\langle X,<\rangle$ with:
- each leaf v is labeled with a boolean value $\operatorname{val}(v) \in\{0,1\}$
- non-leaf v is labeled by a boolean variable $\operatorname{Var}(v) \in X$
- such that for each non-leaf v and vertex w :

$$
w \in\{\operatorname{left}(v), \operatorname{right}(v)\} \Rightarrow(\operatorname{Var}(v)<\operatorname{Var}(w) \vee w \text { is a leaf })
$$

- OBDD B over $\langle X,<\rangle$ is called reduced (ROBDD) iff:

1. for each leaf $v, w:(\operatorname{val}(v)=\operatorname{val}(w)) \Rightarrow v=w$
2. for each non-leaf v : left $(v) \neq \operatorname{right}(v)$
3. for each non-leaf v, w :

$$
(\operatorname{Var}(v)=\operatorname{Var}(w) \wedge \operatorname{right}(v) \cong \operatorname{right}(w) \wedge \operatorname{left}(v) \cong \operatorname{left}(w)) \Rightarrow v=w
$$

REVIEW: The importance of canonicity

- Absence of redundant vertices
- if f_{B} does not depend on x_{i}, ROBDD B does not contain an x_{i} vertex
- Test for equivalence: $f\left(x_{1}, \ldots, x_{n}\right) \equiv g\left(x_{1}, \ldots, x_{n}\right)$?
- generate ROBDDs B_{f} and B_{g}, and check isomorphism
- Test for validity: $f\left(x_{1}, \ldots, x_{n}\right)=1$?
- generate ROBDD B_{f} and check whether it only consists of a 1-leaf
- Test for implication: $f\left(x_{1}, \ldots, x_{n}\right) \rightarrow g\left(x_{1}, \ldots, x_{n}\right)$?
- generate ROBDD $B_{f} \wedge \neg B_{g}$ and check if it just consist of a 0-leaf
- Test for satisfiability
- f is satisfiable if and only if B_{f} is not just the 0-leaf

Operations on ROBDDs

Algorithm Output

Reduce
Not
Apply
$\mathrm{B}_{f o p g}$
Restrict
$\mathrm{B}_{f[\mathrm{x}:=b]}$
Rename
$\mathrm{B}_{f[\mathrm{x}:=y]}$
Abstract
$\mathrm{B}_{\exists x . f}$

Time complexity Space complexity
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right) \quad \mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right| \cdot\left|\mathrm{B}_{g}\right|\right) \quad \mathcal{O}\left(\left|\mathrm{B}_{f}\right| \cdot\left|\mathrm{B}_{g}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|^{2}\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|\right)$
$\mathcal{O}\left(\left|\mathrm{B}_{f}\right|^{2}\right)$
operations are only efficient if f and g have compact ROBDD representations

OBDDs versus deterministic automata

each OBDD B is a deterministic automaton A_{B} with $f_{B}^{-1}(1)=L\left(A_{B}\right)$

Analogies between ROBDDs and deterministic automata

- For language L, a minimized automaton is unique up to isomorphism
- for a given variable ordering <, and function f, an ROBDD is unique upto \cong
- $L=L^{\prime}$? can be checked by verifying isomorphism of their automata
- $f=f^{\prime}$? for boolean functions can be checked by verifying

$$
\mathrm{B}_{f} \cong \mathrm{~B}_{f^{\prime}}
$$

\Rightarrow in both cases, efficient algorithms do exist for this

- $L \neq \varnothing$? \equiv is there a reachable accept state?
- is f satisfiable? \equiv its ROBDD has a reachable leaf 1
- Union, intersection, and complementation on det. automata is efficient
- disjunction, conjunction, and negation on ROBDDs are efficient

Symbolic CTL model checking: Computing $\operatorname{Sat}(\Phi)$

Require: CTL-formula Φ in ENF
Ensure: ROBDD $B_{\text {Sat }(\Phi)}$

$$
\text { switch }(\Phi) \text { : }
$$

true	$:$	return $\operatorname{Const}(1) ;$
false	$:$	return $\operatorname{Const}(0) ;$
x_{i}	$:$	return $\operatorname{ROBDD} B_{f}$ for $f\left(x_{1}, \ldots, x_{n}\right)=x_{i} ;$
$\neg \Psi$	$:$	return $\operatorname{Not}(b d d \operatorname{Sat}(\Psi))$
$\Phi_{1} \wedge \Phi_{2}$	$:$	return $\operatorname{Apply}\left(\wedge, b d d \operatorname{Sat}\left(\Phi_{1}\right), \operatorname{bddSat}\left(\Phi_{2}\right)\right)$
$E X \Psi$	$:$	return $\operatorname{bddEX}(\Psi) ;$
$E\left(\Phi_{1} \cup \Phi_{2}\right)$	$:$	return $\operatorname{bddEU}\left(\Phi_{1}, \Phi_{2}\right)$
$E G \Psi$	$:$	return $\operatorname{bddEG}(\Psi)$
\quad end switch		

Symbolic CTL model checking: The next-step operator

$$
\operatorname{Sat}(X \Phi)=\left\{q \in Q \mid \exists q^{\prime} \cdot\left(q, q^{\prime}\right) \in E \text { and } q^{\prime} \in \operatorname{Sat}(\Phi)\right\}
$$

Require: CTL-formula Φ in ENF Ensure: $\operatorname{ROBDD}_{\text {Sat }}\left(\mathrm{X}_{\Phi)}\right.$

```
B := bddSat(\Phi); {Sat(\Phi)}
B := Rename(B, 利,\ldots,\mp@subsup{x}{n}{},\mp@subsup{x}{1}{\prime},\ldots,\mp@subsup{x}{n}{\prime});
B := Apply(^, B
return Abstract(B, x, , .., 和)
```


Symbolic CTL model checking: Existential until

Require: CTL-formulas Φ, Ψ in ENF
Ensure: $\operatorname{ROBDD} B_{\text {Sat }(\exists(\Phi} \mathbf{U}_{\Psi))}$

```
var \(\mathrm{N}, \mathrm{P}, \mathrm{B}:\) ROBDD;
\(\mathrm{N}:=\) bddSat( \(\Psi)\);
P := Const(0);
B := bddSat( \(\Phi\) );
while \((N \neq P)\) do
    \(\mathrm{P}:=\mathrm{N} ;\left\{T_{i}\right\}\)
    \(\mathrm{N}:=\operatorname{Rename}\left(\mathrm{N}, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\);
    \(\mathrm{N}:=\operatorname{Apply}\left(\wedge, \mathrm{B}_{\rho}, \mathrm{N}\right) ;\left\{\operatorname{Pre}\left(T_{i}\right)\right\}\)
    \(\mathrm{N}:=\operatorname{Abstract}\left(\mathrm{N}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\);
    \(\mathrm{N}:=\operatorname{Apply}(\wedge, \mathrm{N}, \mathrm{B}) ;\left\{\operatorname{Pre}\left(T_{i}\right) \cap \operatorname{Sat}(\Phi)\right\}\)
    \(\mathrm{N}:=\operatorname{Apply}(\vee, \mathrm{P}, \mathrm{N}) ;\left\{T_{i+1}=T_{i} \cup \ldots \ldots\right\}\)
end while
return N
```


Symbolic CTL model checking: Possibly always

Require: CTL-formula Φ in ENF
Ensure: $\left.\operatorname{ROBDD} B_{\text {Sat }} \mathrm{EG} \Phi\right)$

```
var \(\mathrm{N}, \mathrm{P}, \mathrm{B}:\) ROBDD;
\(\mathrm{B}:=\operatorname{bddSat}(\Phi)\);
N := B;
P:= Const(0);
while \((N \neq P)\) do
    \(\mathrm{P}:=\mathrm{N} ;\left\{T_{i}\right\}\)
    \(\mathrm{N}:=\operatorname{Rename}\left(\mathrm{N}, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\);
    \(\mathrm{N}:=\operatorname{Apply}\left(\wedge, \mathrm{B}_{\rho}, \mathrm{N}\right) ;\left\{\operatorname{Pre}\left(T_{i}\right)\right\}\)
    \(\mathrm{N}:=\operatorname{Abstract}\left(\mathrm{N}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\);
    \(\mathrm{N}:=\operatorname{Apply}(\wedge, \mathrm{N}, \mathrm{B}) ;\left\{\operatorname{Pre}\left(T_{i}\right) \cap \operatorname{Sat}(\Phi)\right\}\)
    \(\mathrm{N}:=\operatorname{Apply}(\wedge, \mathrm{P}, \mathrm{N}) ;\left\{T_{i+1}=T_{i} \cap \ldots \ldots\right\}\)
end while
return N
```


REVIEW: The GNBA of LTL-formula φ

For LTL-formula φ, let $\mathcal{G}_{\varphi}=\left(Q, 2^{A P}, \delta, Q_{0}, \mathcal{F}\right)$ where

- $Q=$ all elementary sets $B \subseteq \operatorname{closure}(\varphi), Q_{0}=\{B \in Q \mid \varphi \in B\}$
- $\mathcal{F}=\left\{\left\{B \in Q \mid \varphi_{1} \cup \varphi_{2} \notin B\right.\right.$ or $\left.\left.\varphi_{2} \in B\right\} \mid \varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)\right\}$
- The transition relation $\delta: Q \times 2^{A P} \rightarrow 2^{Q}$ is given by:
- If $A \neq B \cap A P$ then $\delta(B, A)=\varnothing$
- $\delta(B, B \cap A P)$ is the set of all elementary sets of formulas B^{\prime} satisfying:
(i) For every $\mathrm{X} \psi \in \operatorname{closure}(\varphi): \mathrm{X} \psi \in B \Leftrightarrow \psi \in B^{\prime}$, and
(ii) For every $\varphi_{1} \cup \varphi_{2} \in \operatorname{closure(~} \varphi$):

$$
\varphi_{1} \cup \varphi_{2} \in B \Leftrightarrow\left(\varphi_{2} \in B \vee\left(\varphi_{1} \in B \wedge \varphi_{1} \cup \varphi_{2} \in B^{\prime}\right)\right)
$$

A symbolic representation of $S \otimes \mathcal{G}_{\neg \varphi}$

- variables $V \cup\left\{v_{\psi} \mid \psi \in e l(\varphi) \backslash A P\right\}$, where
- $e l(p)=\{p\}$ if $p \in A P$,
- $e l(\neg \psi)=e l(\psi)$,
- el $\left(\psi_{1} \wedge \psi_{2}\right)=e l\left(\psi_{1}\right) \cup e l\left(\psi_{2}\right)$,
- el $(\mathrm{X} \psi)=\{\mathrm{X} \psi\} \cup e l(\psi)$,
- $e l\left(\psi_{1} \cup \psi_{2}\right)=\left\{\psi_{1} \cup \psi_{2}\right\} \cup e l\left(\psi_{1}\right) \cup e l\left(\psi_{1}\right)$.
- initial condition $\theta \wedge \neg \underline{\varphi}$ consistency, where
- $p=p$ if $p \in A P$,
- $\neg \psi=\neg \underline{\psi}$,
- $\psi_{1} \wedge \psi_{2}=\psi_{1} \wedge \underline{\psi_{2}}$,
- ${\bar{X}{ }_{\psi}=v_{X}}^{\prime}{ }^{\prime}$
- $\psi_{1} \cup \psi_{2}=v_{\psi_{1}} \mathrm{U}_{\psi_{2}{ }^{\prime}}$
and consistency $=$

$$
\bigwedge_{\left(\psi_{1} \mathrm{U}_{\left.\psi_{2}\right) \in e l(\varphi)}\left(\underline{\psi_{2}} \rightarrow v_{\psi_{1}} \mathrm{U}_{\psi_{2}}\right) \wedge\left(\neg v_{\psi_{1}} \mathrm{U}_{\psi_{2}} \vee \underline{\psi_{1}} \vee \underline{\psi_{2}}\right) . . . ~ . ~\right.}^{\text {. }}
$$

A symbolic representation of $S \otimes \mathcal{G}_{\neg \varphi}$, cont'd

- transition relation ρ :

$$
\begin{aligned}
& \text { consistency } \wedge^{\prime} \bigwedge_{\mathrm{X} \in \mathrm{el}(\varphi)} \underline{\mathrm{X} \psi} \leftrightarrow \underline{\psi}^{\prime} \\
\wedge & \bigwedge_{\psi_{1} \cup \mathcal{\psi}_{2} \in e l(\varphi)} \underline{\psi_{1} \mathrm{U} \psi_{2}} \leftrightarrow \underline{\psi_{2}} \vee\left(\underline{\psi_{1}} \wedge \underline{\psi_{1} \mathrm{U} \psi_{2}^{\prime}}\right)
\end{aligned}
$$

- acceptance condition $F=\bigwedge_{\psi_{1} \cup_{\psi_{2} \in e l(\varphi)} \square \diamond F_{\psi_{1}} \mathrm{U}_{\psi_{2}} \text { where }{ }^{\text {w }} \text { wher }}$.

$$
F_{\psi_{1}} \cup_{\psi_{2}}=\neg\left(\underline{\psi_{1} \cup \psi_{2}}\right) \vee \underline{\psi_{2}} .
$$

Symbolic Emptiness Check

The language of $S \otimes \mathcal{G}_{\neg \varphi}$ is nonempty
iff there exists a non-empty set Z of reachable states such that
for all states $s \in Z$ and for all $\psi_{1} \cup \psi_{2} \in e l(\varphi)$, there is a path of length ≥ 1 to a state in $Z \cap \operatorname{Sat}\left(F_{\psi_{1}} \mathrm{U}_{\psi_{2}}\right)$.

Symbolic Emptiness Check

The language of $S \otimes \mathcal{G}_{\neg \varphi}$ is nonempty
iff there exists a non-empty set Z of reachable states such that
for all states $s \in Z$ and for all $\psi_{1} \cup \psi_{2} \in e l(\varphi)$,
there is a path of length ≥ 1 to a state in $Z \cap \operatorname{Sat}\left(F_{\psi_{1}} \mathrm{U}_{\psi_{2}}\right)$.

1. Compute Z as the greatest fixpoint of the equation

$$
Z=\bigcap_{\psi_{1} \cup} \cup_{\psi_{2} \in e l(\varphi)} \operatorname{Sat}\left(\operatorname{EXEF}\left(a_{Z} \wedge F_{\psi_{1}} \cup_{\psi_{2}}\right)\right)
$$

where a_{Z} is true iff a state is in Z.
2. Check if the intersection of Z and the initial states is non-empty.

Bounded Model Checking

BDD vs. SAT based approaches

BDD-based approaches

- Approach used by many "industrial-strength" model checkers
- Hundreds of state variables
- Canonical representation \Rightarrow BDDs often too large
- Variable order uniform along all paths, selection of good order very difficult
SAT-based approaches
- Avoid space explosion of BDDs
- Different split orders possible on different branches
- Very efficient implementations available

Basic idea

Search for counterexamples of bounded length
There exists a counterexample of length k to the invariant AG p iff the following formula is satisfiable:
$f_{l}\left(\vec{v}_{0}\right) \wedge f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right) \wedge f_{\rightarrow}\left(\vec{v}_{1}, \vec{v}_{2}\right) \wedge \ldots f_{\rightarrow}\left(\vec{v}_{k-2}, \vec{v}_{k-1}\right) \wedge\left(\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1}\right)$

Example: two-bit counter

- Initial state: $f_{l}=(\neg / \wedge \neg r)$
- Transition: $f_{\rightarrow}\left(I, r, I^{\prime}, r^{\prime}\right)=\left(r^{\prime} \leftrightarrow \neg r\right) \wedge\left(I^{\prime} \leftrightarrow(I \leftrightarrow \neg r)\right)$
- Property: AG $(\neg / \vee \neg r)$

Counterexample of length 3?

$$
\begin{gathered}
\underbrace{\neg I_{0} \wedge \neg r_{0}}_{f_{l}\left(\vec{v}_{0}\right)} \wedge \underbrace{r_{1} \leftrightarrow \neg r_{0} \wedge I_{1} \leftrightarrow\left(I_{0} \leftrightarrow \neg r_{0}\right)}_{f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right)} \\
\wedge \underbrace{r_{2} \leftrightarrow \neg r_{1} \wedge I_{2} \leftrightarrow\left(I_{1} \leftrightarrow \neg r_{1}\right)}_{f_{\rightarrow(}\left(\vec{v}_{1}, \vec{v}_{2}\right)} \wedge(\underbrace{I_{0} \wedge r_{0}}_{\neg p_{0}} \vee \underbrace{I_{1} \wedge r_{1}}_{\neg p_{1}} \vee \underbrace{I_{2} \wedge r_{2}}_{\neg p_{2}})
\end{gathered}
$$

unsatisfiable \Rightarrow no counterexample

Example: two-bit counter

- Initial state: $f_{l}=(\neg / \wedge \neg r)$
- Transition: $f_{\rightarrow}\left(I, r, I^{\prime}, r^{\prime}\right)=\left(r^{\prime} \leftrightarrow \neg r\right) \wedge\left(I^{\prime} \leftrightarrow(I \leftrightarrow \neg r)\right)$
- Property: AG $(\neg / \vee \neg r)$

Counterexample of length 4?

$$
\begin{aligned}
& \underbrace{\neg I_{0} \wedge \neg r_{0}}_{f_{1}\left(\vec{v}_{0}\right)} \wedge \underbrace{\wedge \underbrace{r_{3} \leftrightarrow \neg r_{2} \wedge I_{3} \leftrightarrow\left(I_{2} \leftrightarrow \neg r_{2}\right)}_{\neg p_{0}} \wedge(\underbrace{I_{0} \wedge r_{0}}_{\neg p_{1}} \vee \underbrace{I_{1} \wedge r_{1}}_{\neg p_{2}} \vee I_{2} \wedge r_{2} \vee \underbrace{I_{3} \wedge r_{3}}_{\neg p_{3}})}_{f_{\rightarrow\left(\vec{v}_{0}, \vec{v}_{1}\right)}^{r_{1} \leftrightarrow \neg r_{0} \wedge I_{1} \leftrightarrow\left(I_{0} \leftrightarrow \neg r_{0}\right)} \wedge \underbrace{r_{2} \leftrightarrow \neg r_{1} \wedge I_{2} \leftrightarrow\left(\vec{v}_{3}\right)}_{f_{\rightarrow(}\left(\vec{v}_{1}, \vec{v}_{2}\right)}}
\end{aligned}
$$

satisfiable \Rightarrow counterexample!

SAT

- Given a propositional formula ψ, does there exist a variable assignment under which ψ evaluates to true?
- NP-complete
- In practice, tremendous progress over the last years
- Most solvers use Conjunctive Normal Form (CNF)
- Arbitrary formulas can be transformed in polynomial time into satisfiability equivalent formulas in CNF

Davis-Putnam-Logemann-Loveland (DPLL) algorithm

if preprocess() = CONFLICT then
return UNSAT;
while TRUE do
if not decide-next-branch() then
return SAT;
while deduce() = CONFLICT do
blevel := analyze-conflict();
if blevel=0 then return UNSAT;
backtrack(blevel);
done;
done;

Conflict analysis using an implication graph

Implication Graph
Clauses:
C1: $x 1^{\prime}+x 2+x 6$
C2: $x 2+x 3+x 7$ '
C3: $x 3+x 4$ ' $+x 8$
C4: $x 1^{\prime}+x 6^{\prime}+x 5^{\prime}$
C5: $x 6^{\prime}+x 7+x 8^{\prime}+x 9^{\prime}$
C6: $x 5+x 9+x 10$
C7: $x 9+x 10$ '
Conflict Clause C8:
$x 1$ ' $+x 2+x 3+x 8$ '
Due to conflict (x10, x10')

[^0]
Efficiency

- conflict learning: adding conflict clauses
- non-chronological backtracking
- heuristics for decisions
- efficient data structures
- incremental satisfiability

Bounded LTL model checking

Automata-based approach:

- Translate LTL formula $\neg \varphi$ to Büchi automaton
- Build product with transition system
- Encode all paths that start in initial state and are k steps long
- Require that path contains loop with accepting state

$$
f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right) \wedge \bigvee_{i=0}^{k-1}\left(\left(\vec{v}_{i}=\vec{v}_{k}\right) \wedge \bigvee_{j=i}^{k-1} f_{F}\left(\vec{v}_{j}\right)\right)
$$

Formula size: $O\left(k \cdot|T S| \cdot 2^{|\varphi|}\right)$

Fixpoint-based translation

$$
\psi_{T S} \wedge \psi_{\text {loop }} \wedge[\psi]_{0}
$$

- $\psi_{T S}=f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right)$
- $\psi_{\text {loop }}$: loop constraint, ensures the existence of exactly one loop
- $[\varphi]_{0}$: fixpoint formula, ensures that LTL formula holds

Formula size: $O(k \cdot(|T S|+|\varphi|))$

Loop constraint

- $\psi_{\text {loop }}=$ AtLeastOneLoop \wedge AtMostOneLoop
- AtLeastOneLoop $=\wedge_{i=0}^{k-2}\left(I_{i} \Rightarrow\left(\vec{v}_{i}=\vec{v}_{k-1}\right)\right)$
- AtMostOneLoop $=\bigwedge_{i=0}^{k-2}\left(\right.$ SmallerExists $_{i} \Rightarrow \neg /_{i}$
- SmallerExists ${ }_{0}=$ false
- SmallerExists ${ }_{i+1}=$ SmallerExists $_{i} \vee l_{i}$ for $0 \leq i<k-1$.

Fixpoint formula
Let φ be in PNF.

$$
\begin{aligned}
\text { - } & {[p]_{i}=p_{i} \text { for } i<k-1 } \\
& {[p]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge p_{j}\right) \text { for } i=k-1 } \\
\text { - } & {[\neg p]_{i}=\neg p_{i} \text { for } i<k-1 } \\
& {[\neg p]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge \neg p_{j}\right) \text { for } i=k-1 } \\
\text { - } & {\left[\bigcirc \varphi^{\prime}\right]_{i}=\left[\varphi^{\prime}\right]_{i+1} \text { for } i<k-2 } \\
& {\left[\bigcirc \varphi^{\prime}\right]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge\left[\varphi^{\prime}\right]\right) \text { for } i=k-2 } \\
\text { - } & {\left[\varphi_{1} \cup \varphi_{2}\right]_{i}=\left[\varphi_{2}\right]_{i} \vee\left(\left[\varphi_{1}\right]_{i} \wedge\left[\varphi_{1} \cup \varphi_{2}\right]_{i+1} \text { for } i<k-1\right.} \\
& {\left[\varphi_{1} \cup \varphi_{2}\right]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge\left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{j}\right) \text { for } i=k-1 } \\
\text { - } & {\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i}=\left[\varphi_{2}\right]_{i} \wedge\left(\left[\varphi_{1}\right]_{i} \vee\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i+1} \text { for } i<k-1\right.} \\
& {\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge\left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{j}\right) \text { for } i=k-1 } \\
\text { - } & \left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i}=\left[\varphi_{2}\right]_{i} \vee\left(\left[\varphi_{1}\right]_{i} \wedge\left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i+1} \text { for } i<k-1\right. \\
& \left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i}=\text { false for } i=k-1 \\
\text { - } & \left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i}=\left[\varphi_{2}\right]_{i} \wedge\left(\left[\varphi_{1}\right]_{i} \vee\left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i+1} \text { for } i<k-1\right. \\
& \left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i}=\text { true for } i=k-1
\end{aligned}
$$

The Completeness Threshold

The bound k is increased incrementally until

- a counterexample is found, or
- the problem becomes intractable due to the complexity of the SAT problem
- k reaches a precomputed threshold that guarantees that there is no counterexample
\rightarrow this threshold is called the completeness threshold CL.

The completeness threshold

- Computing $C L$ is as hard as model checking
- Idea: Compute an overapproximation of CL based on the graph structure

Basic notions:

- Diameter D: Longest shortest path between any two reachable states
- Recurrence diameter RD: Longest loop-free path between any two reachable states
- Initialized diameter D^{\prime} : Longest shortest path between some initial state and some reachable state
- Initialized recurrence diameter $R D^{\prime}$: Longest loop-free path between some initial state and some reachable state

[^0]: Prasad/Biere/Gupta: A Survey of Recent Advances in SAT-Based Formal Verification

