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Course Meetings

▸ Lectures:

Tuesdays, 16:15 - 17:55, E1 3 / HS 3

Thursdays, 14:15 - 15:55, E1 3 / HS 3

▸ Tutorials:

Mondays, 16:00 - 18:00, E1 3 / SR 015 or

Wednesdays, 12:00 - 14:00, E1 3 / SR 015

▸ Office Hours:

Bernd Finkbeiner: Wednesdays, 3-4pm, E1 3 / 506

Peter Faymonville: E1 3 / 533

Michael Gerke: E1 3 / 507



Problem Sets

▸ Website:

http://react.cs.uni-saarland.de/teaching/

▸ Released every Thursday (first on October 20th)

▸ Due next Thursday, work in groups of up to 3 students

▸ Submit to our postbox before Thursday lecture (or give it to us

at the start of the lecture)

▸ Individual feedback:

mandatory discussion slot per group

▸ Format: 15 minutes, slots on Thursday after the lecture or on

Friday 9-11am

▸ No grading / solutions only presented in tutorials

http://react.cs.uni-saarland.de/teaching/


Exams

▸ Qualification: Miss at most two discussion slots + hand in

solutions to all problem sets

▸ Three exams: Midterm, Endterm, Final

▸ Need to pass 2 out of 3 to pass the course

▸ Grading: average of best 2

▸ Midterm: 20.12.2011, 4pm

▸ Endterm: 09.02.2012, 2pm

▸ Final: end of March (oral/written to be determined)



Administration

Data

▸ Stammvorlesung, 9 CP

▸ Bachelor or Master in Computer Science

Registration

▸ Register on LSF/HISPOS

https://lsf.uni-saarland.de

▸ Sign up on the paper sheet for tutorial and discussion

https://lsf.uni-saarland.de


Course topic

Algorithms for automatic verificaton of hardware and software

▸ Model checking

▸ Deductive verification

based on methods from

▸ automata theory

▸ logic

▸ symbolic data structures



Connections to other courses

This lecture will provide foundations and motivation for the

following courses:

▸ Quantitative Model Checking

▸ Semantics

▸ Compiler Construction / Static Analysis

▸ Automated Reasoning

▸ Embedded Systems

▸ Automata, Games, and Verification
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The importance of software correctness

▸ Rapidly increasing integration of Information and
Communication Technology in different applications:

▸ embedded systems
▸ communication protocols
▸ transportation systems

▸ Reliability depends on hard- and software integrity

▸ Defects can be fatal and extremely costly
▸ products subject to mass-production
▸ safety-critical systems



What is system verification?

System verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

Verification ≠ validation:

Verification = ‘‘check that we are building the thing right’’

Validation = ‘‘check that we are building the right thing’’



Software verification techniques

▸ Peer reviewing
▸ static technique: manual code inspection, no software

execution
▸ detects between 31 and 93% of defects with median of about

60%
▸ subtle errors (concurrency and algorithm defects) hard to catch

▸ Testing
▸ dynamic technique in which software is executed

▸ Some figures
▸ 30% to 50% of software project costs devoted to testing
▸ more time and effort is spent on validation than on construction
▸ accepted defect density: about 1 defects per 1,000 code lines



Catching software bugs: the sooner, the better
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Formal methods

Formal methods are the

‘‘appliedmathematics for

modelling and analysing ICT systems’’

They offer a large potential for

▸ obtaining an early integration of verification in the design

process

▸ providingmore effective verification techniques (higher

coverage)

▸ reducing the verification time

Highly recommended by IEC, ESA, FAA and NASA

for safety-critical software



Formal verification techniques for property ϕ

▸ deductive methods
▸ method: provide a formal proof that ϕ holds
▸ tool: (automated) theorem prover
▸ applicable if: system has form of a mathematical theory

▸ model checking
▸ method: systematic check on ϕ in all states
▸ tool: model checker (Spin, NuSMV, UppAal, ...)
▸ applicable if: system generates (finite) behavioural model

▸ model-based simulation or testing
▸ method: test for ϕ by exploring possible behaviours
▸ tool: simulator/tester
▸ applicable if: system defines an executable model



Model-based testing
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Milestones in formal verification

▸ Mathematical approach towards program correctness

(Turing, 1949)

▸ Syntax-based technique for sequential programs (Hoare, 1969)

▸ for a given input, does a computer program generate the

correct output?
▸ based on compositional proof rules expressed in predicate logic

▸ Syntax-based technique for concurrent programs (Pnueli, 1977)

▸ can handle properties referring to situations during the

computation
▸ based on proof rules expressed in temporal logic

▸ Automated verification of concurrent programs
(Emerson, Clarke, Sifakis 1981)

▸ model-based instead of proof-rule based approach
▸ does the concurrent program satisfy a given (logical) property?



Model checking

Model checking is an automated technique that, given

a finite-statemodel of a system and a formal property,

systematically checks whether this property holds

for (a given state in) that model.



Model checking overview
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Example: Leader Election

A directed ring of computers. Each has a unique value.

Communication is from left to right. Find out which value is the

greatest.



▸ Initially, all the processes are active.

▸ A process that finds out it does not represent a value that can

be maximal turns to be passive.

▸ A passive process just transfers values from left to right.

▸ The algorithm executes in phases.

▸ In each phase, each process first sends its current value to the

right.

▸ Each process, when receiving the first value from its left
compares it to its current value.

▸ If same: this is the maximum. Tell others.
▸ Not same: send current value again to right.

▸ When receiving the second value: compare the three values
received. These are values

▸ of the process itself.
▸ of the left active process.
▸ of the second active process on the left.

▸ If the left active process has greatest value among three, then

keep this value. Otherwise, become passive.













#define N 5 /* number of processes */
#define I 3 /* node given the smallest number */
#define L 10 /* size of buffer (>= 2*N) */
mtype = { one, two, winner };
chan q[N] = [L] of { mtype , byte };
byte nr_leaders = 0;
proctype node (chan in, out; byte mynumber) {

bit Active = 1, know_winner = 0;
byte rec, maximum = mynumber, neighbor;
printf("MSC: %d\n", mynumber);
out!one(mynumber);

end: do
:: in?one(rec) ->

if
:: Active ->

if
:: rec != maximum ->

out!two(rec);
neighbor = rec

:: else ->
assert(rec == N); /* max is greatest number */
know_winner = 1;
out!winner(rec);

fi
:: else ->

out!one(rec)
fi

:: in?two(rec) ->
if
:: Active ->

if
:: neighbor > rec && neighbor > maximum ->

maximum = neighbor;
out!one(neighbor)

:: else ->
Active = 0

fi
:: else ->

out!two(rec)
fi

:: in?winner(rec) ->
if
:: rec != mynumber ->

printf("MSC: LOST\n");
:: else ->

printf("MSC: LEADER\n");
nr_leaders++;
assert(nr_leaders == 1)

fi ;
if
:: know_winner
:: else -> out!winner(rec)
fi ;
break

od
}

init {
byte proc;
atomic {

proc = 1;
do
:: proc <= N ->

run node (q[proc-1], q[proc%N], (N+I-proc)%N+1);
proc++

:: proc > N ->
break

od
}

}



Proving Assertions

▸ inline assertions

:: in?winner(rec) ->
if
:: rec != mynumber ->

printf("MSC: LOST\n");
:: else ->

printf("MSC: LEADER\n");
nr_leaders++;
assert(nr_leaders == 1)

fi ;
if
:: know_winner
:: else -> out!winner(rec)
fi ;
break

od
}

▸ run a monitor process

proctype monitor(){
assert( nr_leaders <= 1 )

}

▸ prove a property given in temporal logic



The pros of model checking

▸ widely applicable (hardware, software, protocol systems, ...)

▸ allows for partial verification (only most relevant properties)

▸ potential ‘‘push-button’’ technology (software-tools)

▸ rapidly increasing industrial interest

▸ in case of property violation, a counter-example is provided

▸ sound and interesting mathematical foundations

▸ not biased to the most possible scenarios (such as testing)



The cons of model checking

▸ mainly focused on control-intensive applications (less

data-oriented)

▸ any validation model checking is only as ‘‘good’’ as the system

model

▸ no guarantee about completeness of results

▸ impossible to check generalisations (in general)



Deductive Verification

method isqrt(N : int) returns (R : int)
requires N >= 0 ;
ensures (R + 1) * (R + 1) > N ;
ensures R * R <= N ;

{
R := 0 ;

while ((R + 1) * (R + 1) <= N)
{

R := R + 1 ;
}

}



Deductive Verification

method isqrt(N : int) returns (R : int)
requires N >= 0 ;
ensures (R + 1) * (R + 1) > N ;
ensures R * R <= N ;

{
R := 0 ;

while ((R + 1) * (R + 1) <= N)
invariant R * R <= N ;

{
R := R + 1 ;

}
}



Timed Automata

▸ Finite-state automata + clocks

▸ Locations with invariants

▸ Transitions:
▸ guard
▸ synchronization label
▸ clock resets

▸ state = location + clock valuation

→ infinitely many states!

→ idea: finite number of equivalence

classes

ooooidle

oooo
work

c ≤ 5

oooofail

request!
c ∶= 0

c ≥ 5
timeout!

c < 5
reply?



Clock zones: abstraction for timed automata

y

x

z1 ∶ 1 ≤ x ≤ 5
1 ≤ y ≤ 6
−2 ≤ x−y ≤ 3



Clock zones: abstraction for timed automata
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x

z1 ∶ 1 ≤ x ≤ 5
1 ≤ y ≤ 6
−2 ≤ x−y ≤ 3

z2 = z1[y ∶= 0]



Clock zones: abstraction for timed automata
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Clock zones: abstraction for timed automata
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z2 ∶ 1 ≤ x ≤ 5

0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

z3 = future(z2)



Clock zones: abstraction for timed automata
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0 ≤ y ≤ 0
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z3 ∶ 1 ≤ x < ∞

0 ≤ y < ∞

1 ≤ x−y ≤ 5



Clock zones: abstraction for timed automata

▸ timed automaton

A

x ≤ 4

B C

x ≤ 6

y ∶= 0 y > 1

▸ zone graph

▸ abstract states: (q, z) -- finite number of states!

▸ reachability in timed automata is decidable.



Course content

▸ Modeling hard- and software systems

▸ Linear-timemodel checking

▸ Branching-timemodel checking

▸ Equivalences and abstraction

▸ Deductive verification

▸ Real-time systems



Transition Systems



Transition systems

▸ model to describe the behaviour of systems

▸ digraphs where nodes represent states, and edges model

transitions

▸ state:
▸ the current colour of a traffic light
▸ the current values of all program variables + the program

counter
▸ the current value of the registers together with the values of

the input bits

▸ transition: (‘‘state change’’)
▸ a switch from one colour to another
▸ the execution of a program statement
▸ the change of the registers and output bits for a new input



Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L)where
▸ S is a set of states

▸ Act is a set of actions

▸ Ð→ ⊆ S × Act × S is a transition relation

▸ I ⊆ S is a set of initial states
▸ AP is a set of atomic propositions

▸ L ∶ S→ 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−−→ s′ instead of (s, α, s′) ∈Ð→



A beverage vending machine

pay

selectsprite beer

insert_coin

τ
τ

get_sprite get_beer



Direct successors and predecessors

Post(s, α) = { s′ ∈ S ∣ s α
−−→ s′ }, Post(s) = ⋃

α∈Act

Post(s, α)

Pre(s, α) = { s′ ∈ S ∣ s′ α
−−→ s }, Pre(s) = ⋃

α∈Act

Pre(s, α).

Post(C, α) = ⋃
s∈C

Post(s, α), Post(C) = ⋃
s∈C

Post(s) for C ⊆ S.

Pre(C, α) = ⋃
s∈C

Pre(s, α), Pre(C) = ⋃
s∈C

Pre(s) for C ⊆ S.

State s is called terminal if and only if Post(s) = ∅



Action- and AP-determinism

Transition system TS = (S,Act,→, I,AP, L) is action-deterministic iff:

∣ I ∣ ≤ 1 and ∣Post(s, α) ∣ ≤ 1 for all s, α

Transition system TS = (S,Act,→, I,AP, L) is AP-deterministic iff:

∣ I ∣ ≤ 1 and ∣ Post(s) ∩ { s′ ∈ S ∣ L(s′) = A}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equally labeled successors of s

∣ ≤ 1 for all s,A ∈ 2AP



The role of nondeterminism

Here: nondeterminism is a feature!

▸ to model concurrency by interleaving
▸ no assumption about the relative speed of processes

▸ to model implementation freedom
▸ only describes what a system should do, not how

▸ to model under-specified systems, or abstractions of real
systems

▸ use incomplete information

in automata theory, nondeterminismmay be exponentially more succinct

but that’s not the issue here!



Executions

▸ A finite execution fragment ρ of TS is an alternating sequence

of states and actions ending with a state:

ρ = s0 α1 s1 α2 . . . αn sn such that si
αi+1
−−−−→ si+1 for all 0 ≤ i < n.

▸ An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1
−−−−→ si+1 for all 0 ≤ i.

▸ An execution of TS is an initial, maximal execution fragment
▸ a maximal execution fragment is either finite ending in a

terminal state, or infinite
▸ an execution fragment is initial if s0 ∈ I



Example executions

ρ1 = pay coin
−−−−→ select τ

−−→ sprite
sget
−−−−→pay coin

−−−−→ select τ
−−→ sprite

sget
−−−−→ . . .

ρ2 = select τ
−−→ sprite

sget
−−−−→pay coin

−−−−→ select τ
−−→beer

bget
−−−−→ . . .

ρ = pay coin
−−−−→ select τ

−−→ sprite
sget
−−−−→pay coin

−−−−→ select τ
−−→ sprite

Execution fragments ρ1 and ρ are initial, but ρ2 is not

ρ is not maximal as it does not end in a terminal state

Assuming that ρ1 and ρ2 are infinite, they are maximal



Reachable states

State s ∈ S is called reachable in TS if there exists an initial, finite

execution fragment

s0
α1
−−−→ s1

α2
−−−→ . . .

αn
−−−→ sn = s .

Reach(TS) denotes the set of all reachable states in TS.



Modeling sequential circuits

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y

Transition system representation of a simple hardware circuit

Input variable x, output variable y, and register r

Output function ¬(x ⊕ r) and register evaluation function x ∨ r



Atomic propositions

Consider two possible state-labelings:

▸ Let AP = { x, y, r }
▸ L(⟨x = 0, r = 1⟩) = { r } and L(⟨x = 1, r = 1⟩) = { x, r, y }
▸ L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
▸ property e.g., ‘‘once the register is one, it remains one’’

▸ Let AP′ = { x, y } -- the register evaluations are now ‘‘invisible’’
▸ L(⟨x = 0, r = 1⟩) = ∅ and L(⟨x = 1, r = 1⟩) = { x, y }
▸ L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
▸ property e.g., ‘‘the output bit y is set infinitely often’’


