
Verification

Lecture 1

Bernd Finkbeiner

Peter Faymonville

Michael Gerke

Course Meetings

▸ Lectures:

Tuesdays, 16:15 - 17:55, E1 3 / HS 3

Thursdays, 14:15 - 15:55, E1 3 / HS 3

▸ Tutorials:

Mondays, 16:00 - 18:00, E1 3 / SR 015 or

Wednesdays, 12:00 - 14:00, E1 3 / SR 015

▸ Office Hours:

Bernd Finkbeiner: Wednesdays, 3-4pm, E1 3 / 506

Peter Faymonville: E1 3 / 533

Michael Gerke: E1 3 / 507

Problem Sets

▸ Website:

http://react.cs.uni-saarland.de/teaching/

▸ Released every Thursday (first on October 20th)

▸ Due next Thursday, work in groups of up to 3 students

▸ Submit to our postbox before Thursday lecture (or give it to us

at the start of the lecture)

▸ Individual feedback:

mandatory discussion slot per group

▸ Format: 15 minutes, slots on Thursday after the lecture or on

Friday 9-11am

▸ No grading / solutions only presented in tutorials

http://react.cs.uni-saarland.de/teaching/

Exams

▸ Qualification: Miss at most two discussion slots + hand in

solutions to all problem sets

▸ Three exams: Midterm, Endterm, Final

▸ Need to pass 2 out of 3 to pass the course

▸ Grading: average of best 2

▸ Midterm: 20.12.2011, 4pm

▸ Endterm: 09.02.2012, 2pm

▸ Final: end of March (oral/written to be determined)

Administration

Data

▸ Stammvorlesung, 9 CP

▸ Bachelor or Master in Computer Science

Registration

▸ Register on LSF/HISPOS

https://lsf.uni-saarland.de

▸ Sign up on the paper sheet for tutorial and discussion

https://lsf.uni-saarland.de

Course topic

Algorithms for automatic verificaton of hardware and software

▸ Model checking

▸ Deductive verification

based on methods from

▸ automata theory

▸ logic

▸ symbolic data structures

Connections to other courses

This lecture will provide foundations and motivation for the

following courses:

▸ Quantitative Model Checking

▸ Semantics

▸ Compiler Construction / Static Analysis

▸ Automated Reasoning

▸ Embedded Systems

▸ Automata, Games, and Verification

����

����

�������������	
�����

����

����

The importance of software correctness

▸ Rapidly increasing integration of Information and
Communication Technology in different applications:

▸ embedded systems
▸ communication protocols
▸ transportation systems

▸ Reliability depends on hard- and software integrity

▸ Defects can be fatal and extremely costly
▸ products subject to mass-production
▸ safety-critical systems

What is system verification?

System verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

Verification ≠ validation:

Verification = ‘‘check that we are building the thing right’’

Validation = ‘‘check that we are building the right thing’’

Software verification techniques

▸ Peer reviewing
▸ static technique: manual code inspection, no software

execution
▸ detects between 31 and 93% of defects with median of about

60%
▸ subtle errors (concurrency and algorithm defects) hard to catch

▸ Testing
▸ dynamic technique in which software is executed

▸ Some figures
▸ 30% to 50% of software project costs devoted to testing
▸ more time and effort is spent on validation than on construction
▸ accepted defect density: about 1 defects per 1,000 code lines

Catching software bugs: the sooner, the better

Analysis Conceptual
Design

Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced

(in %)

System Testing

(in 1,000 US $)

Formal methods

Formal methods are the

‘‘appliedmathematics for

modelling and analysing ICT systems’’

They offer a large potential for

▸ obtaining an early integration of verification in the design

process

▸ providingmore effective verification techniques (higher

coverage)

▸ reducing the verification time

Highly recommended by IEC, ESA, FAA and NASA

for safety-critical software

Formal verification techniques for property ϕ

▸ deductive methods
▸ method: provide a formal proof that ϕ holds
▸ tool: (automated) theorem prover
▸ applicable if: system has form of a mathematical theory

▸ model checking
▸ method: systematic check on ϕ in all states
▸ tool: model checker (Spin, NuSMV, UppAal, ...)
▸ applicable if: system generates (finite) behavioural model

▸ model-based simulation or testing
▸ method: test for ϕ by exploring possible behaviours
▸ tool: simulator/tester
▸ applicable if: system defines an executable model

Model-based testing

system

Test Generation

systemmodel

Modeling

product or
prototype

test suiteTest Execution

pass fail

testing/simulation can show the presence of errors,

not their absence

Milestones in formal verification

▸ Mathematical approach towards program correctness

(Turing, 1949)

▸ Syntax-based technique for sequential programs (Hoare, 1969)

▸ for a given input, does a computer program generate the

correct output?
▸ based on compositional proof rules expressed in predicate logic

▸ Syntax-based technique for concurrent programs (Pnueli, 1977)

▸ can handle properties referring to situations during the

computation
▸ based on proof rules expressed in temporal logic

▸ Automated verification of concurrent programs
(Emerson, Clarke, Sifakis 1981)

▸ model-based instead of proof-rule based approach
▸ does the concurrent program satisfy a given (logical) property?

Model checking

Model checking is an automated technique that, given

a finite-statemodel of a system and a formal property,

systematically checks whether this property holds

for (a given state in) that model.

Model checking overview

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient

memory

counterexample
Simulation

location
error

system

violated +

Model Checking

requirements

Formalizing Modeling

systemmodel
property

specification

Example: Leader Election

A directed ring of computers. Each has a unique value.

Communication is from left to right. Find out which value is the

greatest.

▸ Initially, all the processes are active.

▸ A process that finds out it does not represent a value that can

be maximal turns to be passive.

▸ A passive process just transfers values from left to right.

▸ The algorithm executes in phases.

▸ In each phase, each process first sends its current value to the

right.

▸ Each process, when receiving the first value from its left
compares it to its current value.

▸ If same: this is the maximum. Tell others.
▸ Not same: send current value again to right.

▸ When receiving the second value: compare the three values
received. These are values

▸ of the process itself.
▸ of the left active process.
▸ of the second active process on the left.

▸ If the left active process has greatest value among three, then

keep this value. Otherwise, become passive.

#define N 5 /* number of processes */
#define I 3 /* node given the smallest number */
#define L 10 /* size of buffer (>= 2*N) */
mtype = { one, two, winner };
chan q[N] = [L] of { mtype , byte };
byte nr_leaders = 0;
proctype node (chan in, out; byte mynumber) {

bit Active = 1, know_winner = 0;
byte rec, maximum = mynumber, neighbor;
printf("MSC: %d\n", mynumber);
out!one(mynumber);

end: do
:: in?one(rec) ->

if
:: Active ->

if
:: rec != maximum ->

out!two(rec);
neighbor = rec

:: else ->
assert(rec == N); /* max is greatest number */
know_winner = 1;
out!winner(rec);

fi
:: else ->

out!one(rec)
fi

:: in?two(rec) ->
if
:: Active ->

if
:: neighbor > rec && neighbor > maximum ->

maximum = neighbor;
out!one(neighbor)

:: else ->
Active = 0

fi
:: else ->

out!two(rec)
fi

:: in?winner(rec) ->
if
:: rec != mynumber ->

printf("MSC: LOST\n");
:: else ->

printf("MSC: LEADER\n");
nr_leaders++;
assert(nr_leaders == 1)

fi ;
if
:: know_winner
:: else -> out!winner(rec)
fi ;
break

od
}

init {
byte proc;
atomic {

proc = 1;
do
:: proc <= N ->

run node (q[proc-1], q[proc%N], (N+I-proc)%N+1);
proc++

:: proc > N ->
break

od
}

}

Proving Assertions

▸ inline assertions

:: in?winner(rec) ->
if
:: rec != mynumber ->

printf("MSC: LOST\n");
:: else ->

printf("MSC: LEADER\n");
nr_leaders++;
assert(nr_leaders == 1)

fi ;
if
:: know_winner
:: else -> out!winner(rec)
fi ;
break

od
}

▸ run a monitor process

proctype monitor(){
assert(nr_leaders <= 1)

}

▸ prove a property given in temporal logic

The pros of model checking

▸ widely applicable (hardware, software, protocol systems, ...)

▸ allows for partial verification (only most relevant properties)

▸ potential ‘‘push-button’’ technology (software-tools)

▸ rapidly increasing industrial interest

▸ in case of property violation, a counter-example is provided

▸ sound and interesting mathematical foundations

▸ not biased to the most possible scenarios (such as testing)

The cons of model checking

▸ mainly focused on control-intensive applications (less

data-oriented)

▸ any validation model checking is only as ‘‘good’’ as the system

model

▸ no guarantee about completeness of results

▸ impossible to check generalisations (in general)

Deductive Verification

method isqrt(N : int) returns (R : int)
requires N >= 0 ;
ensures (R + 1) * (R + 1) > N ;
ensures R * R <= N ;

{
R := 0 ;

while ((R + 1) * (R + 1) <= N)
{

R := R + 1 ;
}

}

Deductive Verification

method isqrt(N : int) returns (R : int)
requires N >= 0 ;
ensures (R + 1) * (R + 1) > N ;
ensures R * R <= N ;

{
R := 0 ;

while ((R + 1) * (R + 1) <= N)
invariant R * R <= N ;

{
R := R + 1 ;

}
}

Timed Automata

▸ Finite-state automata + clocks

▸ Locations with invariants

▸ Transitions:
▸ guard
▸ synchronization label
▸ clock resets

▸ state = location + clock valuation

→ infinitely many states!

→ idea: finite number of equivalence

classes

ooooidle

oooo
work

c ≤ 5

oooofail

request!
c ∶= 0

c ≥ 5
timeout!

c < 5
reply?

Clock zones: abstraction for timed automata

y

x

z1 ∶ 1 ≤ x ≤ 5
1 ≤ y ≤ 6
−2 ≤ x−y ≤ 3

Clock zones: abstraction for timed automata

y

x

z1 ∶ 1 ≤ x ≤ 5
1 ≤ y ≤ 6
−2 ≤ x−y ≤ 3

z2 = z1[y ∶= 0]

Clock zones: abstraction for timed automata

y

x
z2 ∶ 1 ≤ x ≤ 5

0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

Clock zones: abstraction for timed automata

y

x
z2 ∶ 1 ≤ x ≤ 5

0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

z3 = future(z2)

Clock zones: abstraction for timed automata

y

x
z2 ∶ 1 ≤ x ≤ 5

0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

z3 ∶ 1 ≤ x < ∞

0 ≤ y < ∞

1 ≤ x−y ≤ 5

Clock zones: abstraction for timed automata

▸ timed automaton

A

x ≤ 4

B C

x ≤ 6

y ∶= 0 y > 1

▸ zone graph

▸ abstract states: (q, z) -- finite number of states!

▸ reachability in timed automata is decidable.

Course content

▸ Modeling hard- and software systems

▸ Linear-timemodel checking

▸ Branching-timemodel checking

▸ Equivalences and abstraction

▸ Deductive verification

▸ Real-time systems

Transition Systems

Transition systems

▸ model to describe the behaviour of systems

▸ digraphs where nodes represent states, and edges model

transitions

▸ state:
▸ the current colour of a traffic light
▸ the current values of all program variables + the program

counter
▸ the current value of the registers together with the values of

the input bits

▸ transition: (‘‘state change’’)
▸ a switch from one colour to another
▸ the execution of a program statement
▸ the change of the registers and output bits for a new input

Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L)where
▸ S is a set of states

▸ Act is a set of actions

▸ Ð→ ⊆ S × Act × S is a transition relation

▸ I ⊆ S is a set of initial states
▸ AP is a set of atomic propositions

▸ L ∶ S→ 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−−→ s′ instead of (s, α, s′) ∈Ð→

A beverage vending machine

pay

selectsprite beer

insert_coin

τ
τ

get_sprite get_beer

Direct successors and predecessors

Post(s, α) = { s′ ∈ S ∣ s α
−−→ s′ }, Post(s) = ⋃

α∈Act

Post(s, α)

Pre(s, α) = { s′ ∈ S ∣ s′ α
−−→ s }, Pre(s) = ⋃

α∈Act

Pre(s, α).

Post(C, α) = ⋃
s∈C

Post(s, α), Post(C) = ⋃
s∈C

Post(s) for C ⊆ S.

Pre(C, α) = ⋃
s∈C

Pre(s, α), Pre(C) = ⋃
s∈C

Pre(s) for C ⊆ S.

State s is called terminal if and only if Post(s) = ∅

Action- and AP-determinism

Transition system TS = (S,Act,→, I,AP, L) is action-deterministic iff:

∣ I ∣ ≤ 1 and ∣Post(s, α) ∣ ≤ 1 for all s, α

Transition system TS = (S,Act,→, I,AP, L) is AP-deterministic iff:

∣ I ∣ ≤ 1 and ∣ Post(s) ∩ { s′ ∈ S ∣ L(s′) = A}
´¹¹¸¹¹¶
equally labeled successors of s

∣ ≤ 1 for all s,A ∈ 2AP

The role of nondeterminism

Here: nondeterminism is a feature!

▸ to model concurrency by interleaving
▸ no assumption about the relative speed of processes

▸ to model implementation freedom
▸ only describes what a system should do, not how

▸ to model under-specified systems, or abstractions of real
systems

▸ use incomplete information

in automata theory, nondeterminismmay be exponentially more succinct

but that’s not the issue here!

Executions

▸ A finite execution fragment ρ of TS is an alternating sequence

of states and actions ending with a state:

ρ = s0 α1 s1 α2 . . . αn sn such that si
αi+1
−−−−→ si+1 for all 0 ≤ i < n.

▸ An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1
−−−−→ si+1 for all 0 ≤ i.

▸ An execution of TS is an initial, maximal execution fragment
▸ a maximal execution fragment is either finite ending in a

terminal state, or infinite
▸ an execution fragment is initial if s0 ∈ I

Example executions

ρ1 = pay coin
−−−−→ select τ

−−→ sprite
sget
−−−−→pay coin

−−−−→ select τ
−−→ sprite

sget
−−−−→ . . .

ρ2 = select τ
−−→ sprite

sget
−−−−→pay coin

−−−−→ select τ
−−→beer

bget
−−−−→ . . .

ρ = pay coin
−−−−→ select τ

−−→ sprite
sget
−−−−→pay coin

−−−−→ select τ
−−→ sprite

Execution fragments ρ1 and ρ are initial, but ρ2 is not

ρ is not maximal as it does not end in a terminal state

Assuming that ρ1 and ρ2 are infinite, they are maximal

Reachable states

State s ∈ S is called reachable in TS if there exists an initial, finite

execution fragment

s0
α1
−−−→ s1

α2
−−−→ . . .

αn
−−−→ sn = s .

Reach(TS) denotes the set of all reachable states in TS.

Modeling sequential circuits

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y

Transition system representation of a simple hardware circuit

Input variable x, output variable y, and register r

Output function ¬(x ⊕ r) and register evaluation function x ∨ r

Atomic propositions

Consider two possible state-labelings:

▸ Let AP = { x, y, r }
▸ L(⟨x = 0, r = 1⟩) = { r } and L(⟨x = 1, r = 1⟩) = { x, r, y }
▸ L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
▸ property e.g., ‘‘once the register is one, it remains one’’

▸ Let AP′ = { x, y } -- the register evaluations are now ‘‘invisible’’
▸ L(⟨x = 0, r = 1⟩) = ∅ and L(⟨x = 1, r = 1⟩) = { x, y }
▸ L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
▸ property e.g., ‘‘the output bit y is set infinitely often’’

