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Büchi Automata

Bernd Finkbeiner – Sven Schewe
Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Büchi automata

A nondeterministic Büchi automaton (NBA) A is a tuple (Q, Σ, δ, Q0, F ) where:

• Q is a finite set of states with Q0 ⊆ Q a set of initial states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• F ⊆ Q is a set of accept (or: final) states

The size of A, denoted |A|, is the number of states and transitions in A:

|A| = |Q| +
X
q∈Q

X
A∈Σ

| δ(q, A) |
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REVIEW

Language of an NBA
• NBA A = (Q,Σ, δ,Q0, F ) and word σ = A0A1A2 . . . ∈ Σω

• A run for σ in A is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai−−→ qi+1 for all 0 � i

• Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many i

• σ ∈ Σω is accepted by A if there exists an accepting run for σ

• The accepted language of A:

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A }

• NBA A and A′ are equivalent if Lω(A) = Lω(A′)
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REVIEW

NBA versus NFA

a

a

a

a

finite equivalence �⇒ ω-equivalence

L(A) = L(A′), but Lω(A) �= Lω(A′)

a

a

a

a

ω-equivalence �⇒ finite equivalence

Lω(A) = Lω(A′), but L(A) �= L(A′)
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REVIEW

NBA and ω-regular languages

• An ω-regular expression over the alphabet Σ has the form

G = E1 · Fω + . . . + En · Fω
n

where n � 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over
Σ such that ε is not in the language of Fi for all 1 � i � b.

• A language L ⊆ Σω is called ω-regular, if it is the language of some
ω-regular expression.

• The class of languages accepted by NBA agrees with the class of
ω-regular languages.

Proof on the following slides.
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Union of NBA

For NBA A1 and A2 (both over the alphabet Σ)

there exists an NBA A such that:

Lω(A) = Lω(A1) ∪ Lω(A2) and |A| = O(|A1| + |A2|)
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Proof

• Let A1 = (Q1, Σ, δ1, Q0,1, F1) and A2 = (Q2, Σ, δ2, Q0,2, F2) be NBA
over the same alphabet Σ.

• Assume w.l.o.g. that Q1 ∩ Q2 = ∅.

• We construct A1 + A2 = (Q1 ∪ Q2,Σ, δ,Q0,1 ∪ Q0,2, F1 ∪ F2) where

δ(q,A) =
{

δ1(q, A) if q ∈ Q1,
δ2(q, A) if q ∈ Q2.

• Any accepting run in A1 or in A2 is an accepting run in A1 + A2.

• Any accepting run in A1 + A2 is either an accepting run in A1 or an
accepting run in A2.

�
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ω-operator for NFA

For each NFA A with ε /∈ L(A) there exists an NBA A′ such that:

Lω(A′) = L(A)ω and |A′| = O(|A|)
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Proof

• Let A = (Q,Σ, δ,Q0, F ) be an NFA with ε �∈ L(A).

• Step 1: Ensure that all initial states have no incoming transitions and
are not accepting.
If A does not have this property, modify A as follows:

– Add a new initial non-accept state qnew with transitions
– qnew

A−→ q iff q0
A−→ q for some q0 ∈ Q0.

– Set Q0 to {qnew}.
– This modification does not affect the language of A.

• In the following, we assume that all initial states have no incoming
transitions and that Q0 ∩ F = ∅.
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Proof (cont’d)

• Step 2: Construct A′ = (Q, Σ, δ′, Q0, F
′):

– δ′(q, A) =
{

δ(q,A) if δ(q,A) ∩ F = ∅,
δ(q,A) ∪ Q0 otherwise;

– F ′ = Q0

• In the following, we show that Lω(A′) = L(A)ω.
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Proof (cont’d): Lω(A′) = L(A)ω

⊆: – Assume σ ∈ Lω(A′) and q0q1q2 . . . is an accepting run for σ in A′.
– Hence, qi ∈ F ′ = Q0 for infinitely many indices i: i0, i1, i2, . . ..
– Divide σ in subwords σ = w1w2w3 . . .

such that qik ∈ δ′∗(qik−1
, wk) for all k � 1.

– Since the states qik ∈ Q0 do not have any predecessors in A,
we get δ∗(qik−1

, wk) ∩ F �= ∅.
– This yields wk ∈ L(A) for every k � 1.
– Hence, σ ∈ L(A)ω.
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Proof (cont’d): Lω(A′) = L(A)ω

⊇: – Let σ = w1w2w3 ∈ Σω such that wk ∈ L(A) for all k � 1.
– For each k, we choose an accepting run qk

0qk
1qk

2 . . . qk
nk

of A on wk.
– Hence, qk

0 ∈ Q0 and qk
nk

∈ F for all k � 1.
– Thus,

q1
0 . . . q1

n1−1q
2
0 . . . q2

n2−1q
3
0 . . . q3

n3−1 . . .

is an accepting run for σ in A′.
– Hence, σ ∈ Lω(A′).

�
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Concatenation of an NFA and an NBA

For NFA A and NBA A′ (both over the alphabet Σ)

there exists an NBA A′′ with

Lω(A′′) = L(A).Lω(A′) and |A′′| = O(|A| + |A′|)
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Construction

• Let A = (Q,Σ, δ,Q0, F ) be the NFA
and A′ = (Q′, Σ, δ′, Q′

0, F
′) be the NBA with Q ∩ Q′ = ∅.

• Construct NBA A′′ = (Q′′,Σ, δ′′, Q′′
0 , F ′′):

– Q0 =
{

Q0 if Q0 ∩ F = ∅,
Q0 ∪ Q′

0 otherwise;

– δ′′(q,A) =

⎧⎨
⎩

δ(q,A) if q ∈ Q and δ(q,A) ∩ F = ∅,
δ(q,A) ∪ Q′

0 if q ∈ Q and δ(q,A) ∩ F �= ∅,
δ′(q,A) if q ∈ Q′

�
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NBA accept ω-regular languages

For each NBA A: Lω(A) is ω-regular
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Proof

• Define Lqq′ = {w ∈ Σ∗ | q′ ∈ δ∗(q, w)}.

• Consider a word σ ∈ L(A) and an accepting run q0q1q2 . . . for σ in A.

• Hence, qi = q ∈ F for infinitely many indices i: i0, i1, i2, . . ..

• Divide σ in subwords σ = w1w2w3 . . . such that

σ = w0︸︷︷︸ w1︸︷︷︸ w2︸︷︷︸ w3︸︷︷︸ . . .

∈ Lq0q ∈ Lqq ∈ Lqq ∈ Lqq

• Hence,
σ ∈

⋃
q0∈Q0,q∈F

Lq0q.(Lqq � {ε})ω,

which is ω-regular.

Bernd Finkbeiner Verification – Lecture 9 15



Proof (cont’d)

• On the other hand, any word

σ = w0︸︷︷︸ w1︸︷︷︸ w2︸︷︷︸ w3︸︷︷︸ . . .

∈ Lq0q ∈ Lqq ∈ Lqq ∈ Lqq

has an accepting run in A.

• Hence, Lω(A) agrees with the ω-regular language

σ ∈
⋃

q0∈Q0,q∈F

Lq0q.(Lqq � {ε})ω.

�
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Checking non-emptiness

Lω(A) �= ∅ if and only if

∃q0 ∈ Q0. ∃q ∈ F. ∃w ∈ Σ∗. ∃v ∈ Σ+. q ∈ δ∗(q0, w) ∧ q ∈ δ∗(q, v)︸ ︷︷ ︸
there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in time O(|A|)
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Non-blocking NBA

• NBA A is non-blocking if δ(q, A) �= ∅ for all q and A ∈ Σ

– for each input word there exists an infinite run

• For each NBA A there exists a non-blocking NBA trap(A) with:

– |trap(A)| = O(|A|) and A ≡ trap(A)

• For A = (Q,Σ, δ,Q0, F ) let trap(A) = (Q′, Σ, δ′, Q0, F ) with:

– Q′ = Q ∪ { qtrap } where { qtrap } �∈ Q

–

δ
′
(q, A) =

j
δ(q, A) : if q ∈ Q and δ(q, A) �= ∅

{qtrap} : otherwise
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Deterministic BA

Büchi automaton A is called deterministic if

|Q0| � 1 and |δ(q, A)| � 1 for all q ∈ Q and A ∈ Σ

DBA A is called total if

|Q0| = 1 and |δ(q, A)| = 1 for all q ∈ Q and A ∈ Σ

total DBA provide unique runs for each input word
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Example DBA for LT property

a ∧ b

¬a ∧ b
¬a ∧ b a ∧ b

b

a ∧ b
b a ∧ b

These NBA both represent the LT property ”always b and infinitely often a”
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NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts Lω((A + B)∗Bω)
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Proof

• Proof by contradiction. Assume that L = Lω((A + B)∗Bω) = Lω(A)
for some DBA A = (Q, Σ, δ,Q0, F ).

• Since A is deterministic, we consider δ∗ a function Q × Σ∗ → Q.

• Since Bω ∈ L, there exists an n1 ∈ N�1, such that

q1 := δ∗(q0, B
n1) ∈ F.

• Since Bn1ABω ∈ L, there exists an n2 ∈ N�1, such that

q2 := δ∗(q0, B
n1ABn2) ∈ F.
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Proof (cont’d)

• Continuing this process, we obtain an infinite sequence of numbers
ni and states qi such that

qi := δ∗(q0, B
n1ABn2A . . . Bni−1ABni) ∈ F.

• Since A has only finitely many states, there exist i, j,
such that i < j and qi = qj.

• Thus, A has an accepting run on

w := Bn1ABn2A . . . ABni(ABni+1A . . . ABnj)ω.

• However, w �∈ L. Contradiction.

�
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The need for nondeterminism

q0 q1 q2
a ¬a

true a true

let { a } = AP, i.e., 2AP = {A, B} where A = {} and B = {a}
”eventually forever a” equals (A + B)∗Bω = ({} + {a})∗{a}ω
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Generalized Büchi automata

• NBA are as expressive as ω-regular languages

• Variants of NBA exist that are equally expressive

– Muller, Rabin, and Streett automata
– generalized Büchi automata (GNBA)

• GNBA are like NBA, but have a distinct acceptance criterion

– a GNBA requires to visit several sets F1, . . . , Fk (k � 0) infinitely often
– for k=0, all runs are accepting
– for k=1 this boils down to an NBA

• GNBA are useful to relate temporal logic and automata

– but they are equally expressive as NBA
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Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ, Q0,F) where:

• Q is a finite set of states with Q0 ⊆ Q a set of initial states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• F = {F1, . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted |G|, is the number of states and transitions in G:

|G| = |Q| +
X
q∈Q

X
A∈Σ

| δ(q, A) |
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Language of a GNBA

• GNBA G = (Q,Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

• A run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai−−→ qi+1 for all 0 � i

• Run q0 q1 . . . is accepting if for all F ∈ F : qi ∈ F for infinitely many i

• σ ∈ Σω is accepted by G if there exists an accepting run for σ

• The accepted language of G:

– Lω(G) =
n

σ ∈ Σω | there exists an accepting run for σ in G
o

• GNBA G and G′ are equivalent if Lω(G) = Lω(G′)

Bernd Finkbeiner Verification – Lecture 9 27



Example

q0q1 q2

true

crit2

truecrit1

true

F = {F1, F2}; F1 = {q1}; F2 = {q2}

A GNBA for the property ”both processes are infinitely often in their critical section”
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From GNBA to NBA

For any GNBA G there exists an NBA A with:

Lω(G) = Lω(A) and |A| = O(|G| · |F|)
where F denotes the set of acceptance sets in G
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