Verification – Lecture 9 Büchi Automata

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Büchi automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{\mathcal{A} \in \Sigma} |\delta(q, \mathcal{A})|$$

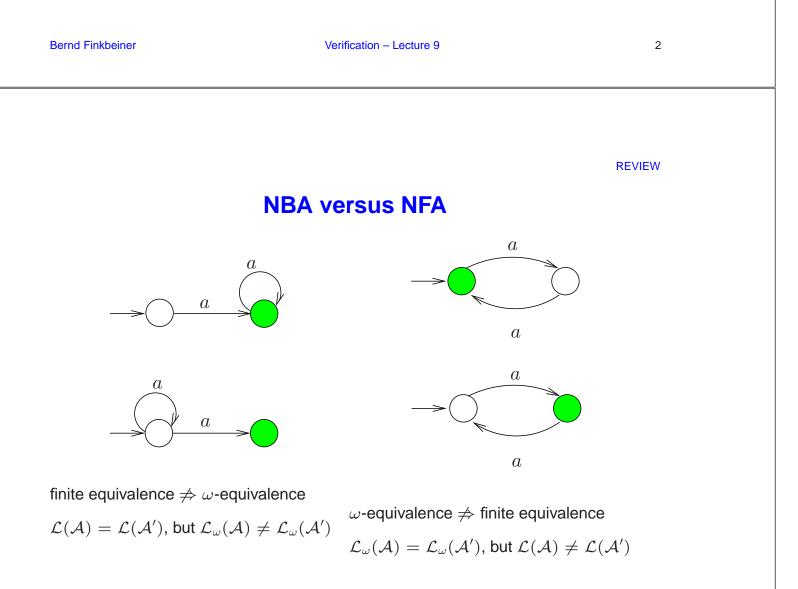
Verification - Lecture 9

Language of an NBA

- NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = \mathcal{A}_0 \mathcal{A}_1 \mathcal{A}_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in A is an infinite sequence q₀ q₁ q₂... such that:
 q₀ ∈ Q₀ and q_i → A_i q_{i+1} for all 0 ≤ i
- Run $q_0 q_1 q_2 \dots$ is *accepting* if $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{A} if there exists an accepting run for σ
- The accepted language of \mathcal{A} :

 $\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{A} \right\}$

• NBA \mathcal{A} and \mathcal{A}' are *equivalent* if $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$



4

NBA and ω -regular languages

• An ω -regular expression over the alphabet Σ has the form

$$G = E_1 \cdot F^\omega + \ldots + E_n \cdot F_n^\omega$$

where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that ϵ is not in the language of F_i for all $1 \le i \le b$.

- A language $\mathcal{L} \subseteq \Sigma^{\omega}$ is called ω -regular, if it is the language of some ω -regular expression.
- The class of languages accepted by NBA agrees with the class of ω -regular languages.

Proof on the following slides.

Bernd Finkbeiner

Verification - Lecture 9

Union of NBA

For NBA A_1 and A_2 (both over the alphabet Σ) there exists an NBA A such that: $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cup \mathcal{L}_{\omega}(\mathcal{A}_2)$ and $|\mathcal{A}| = \mathcal{O}(|\mathcal{A}_1| + |\mathcal{A}_2|)$

Proof

- Let $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2)$ be NBA over the same alphabet Σ .
- Assume w.l.o.g. that $Q_1 \cap Q_2 = \emptyset$.
- We construct $\mathcal{A}_1 + \mathcal{A}_2 = (Q_1 \cup Q_2, \Sigma, \delta, Q_{0,1} \cup Q_{0,2}, F_1 \cup F_2)$ where $\delta(q, A) = \begin{cases} \delta_1(q, A) & \text{if } q \in Q_1, \\ \delta_2(q, A) & \text{if } q \in Q_2. \end{cases}$
- Any accepting run in A_1 or in A_2 is an accepting run in $A_1 + A_2$.
- Any accepting run in A₁ + A₂ is either an accepting run in A₁ or an accepting run in A₂.

Bernd Finkbeiner

Verification - Lecture 9

$\omega\text{-operator}$ for NFA

 $\begin{array}{ll} \mbox{For each NFA } \mathcal{A} \mbox{ with } \varepsilon \notin \mathcal{L}(\mathcal{A}) \mbox{ there exists an NBA } \mathcal{A}' \mbox{ such that:} \\ \\ \mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega} \mbox{ and } |\mathcal{A}'| = \mathcal{O}(|\mathcal{A}|) \end{array}$

Proof

- Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA with $\epsilon \notin \mathcal{L}(\mathcal{A})$.
- Step 1: Ensure that all initial states have no incoming transitions and are not accepting.

If ${\mathcal A}$ does not have this property, modify ${\mathcal A}$ as follows:

- Add a new initial non-accept state q_{new} with transitions
- $q_{\text{new}} \xrightarrow{A} q$ iff $q_0 \xrightarrow{A} q$ for some $q_0 \in Q_0$.
- Set Q_0 to $\{q_{new}\}$.
- This modification does not affect the language of $\mathcal{A}.$
- In the following, we assume that all initial states have no incoming transitions and that $Q_0 \cap F = \emptyset$.

Bernd Finkbeiner

Verification – Lecture 9

8

Proof (cont'd)

• Step 2: Construct $\mathcal{A}' = (Q, \Sigma, \delta', Q_0, F')$:

$$\begin{array}{ll} \textbf{-} \ \delta'(q,A) = \left\{ \begin{array}{ll} \delta(q,A) & \text{ if } \delta(q,A) \cap F = \varnothing, \\ \delta(q,A) \cup Q_0 & \text{ otherwise;} \end{array} \right. \\ \textbf{-} \ F' = Q_0 \end{array} \right.$$

• In the following, we show that $\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$.

Proof (cont'd): $\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$

- \subseteq : Assume $\sigma \in \mathcal{L}_{\omega}(\mathcal{A}')$ and $q_0q_1q_2...$ is an accepting run for σ in \mathcal{A}' .
 - Hence, $q_i \in F' = Q_0$ for infinitely many indices $i: i_0, i_1, i_2, \ldots$
 - Divide σ in subwords $\sigma = w_1 w_2 w_3 \dots$ such that $q_{i_k} \in \delta'^*(q_{i_{k-1}}, w_k)$ for all $k \ge 1$.
 - Since the states $q_{i_k} \in Q_0$ do not have any predecessors in \mathcal{A} , we get $\delta^*(q_{i_{k-1}}, w_k) \cap F \neq \emptyset$.
 - This yields $w_k \in \mathcal{L}(\mathcal{A})$ for every $k \ge 1$.
 - Hence, $\sigma \in \mathcal{L}(\mathcal{A})^{\omega}$.

Bernd Finkbeiner

Verification – Lecture 9

10

Proof (cont'd): $\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$

- \supseteq : Let $\sigma = w_1 w_2 w_3 \in \Sigma^{\omega}$ such that $w_k \in \mathcal{L}(\mathcal{A})$ for all $k \ge 1$.
 - For each k, we choose an accepting run $q_0^k q_1^k q_2^k \dots q_{n_k}^k$ of \mathcal{A} on w_k .
 - Hence, $q_0^k \in Q_0$ and $q_{n_k}^k \in F$ for all $k \ge 1$.
 - Thus,

$$q_0^1 \dots q_{n_1-1}^1 q_0^2 \dots q_{n_2-1}^2 q_0^3 \dots q_{n_3-1}^3 \dots$$

is an accepting run for σ in \mathcal{A}' .

- Hence, $\sigma \in \mathcal{L}_{\omega}(\mathcal{A}')$.

Concatenation of an NFA and an NBA

For NFA \mathcal{A} and NBA \mathcal{A}' (both over the alphabet Σ) there exists an NBA \mathcal{A}'' with $\mathcal{L}_{\omega}(\mathcal{A}'') = \mathcal{L}(\mathcal{A}).\mathcal{L}_{\omega}(\mathcal{A}')$ and $|\mathcal{A}''| = \mathcal{O}(|\mathcal{A}| + |\mathcal{A}'|)$

Bernd Finkbeiner

Verification - Lecture 9

12

Construction

- Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be the NFA and $\mathcal{A}' = (Q', \Sigma, \delta', Q'_0, F')$ be the NBA with $Q \cap Q' = \emptyset$.
- Construct NBA $\mathcal{A}'' = (Q'', \Sigma, \delta'', Q_0'', F'')$:

$$- Q_0 = \begin{cases} Q_0 & \text{if } Q_0 \cap F = \varnothing, \\ Q_0 \cup Q'_0 & \text{otherwise;} \end{cases} \\ - \delta''(q, A) = \begin{cases} \delta(q, A) & \text{if } q \in Q \text{ and } \delta(q, A) \cap F = \varnothing, \\ \delta(q, A) \cup Q'_0 & \text{if } q \in Q \text{ and } \delta(q, A) \cap F \neq \varnothing, \\ \delta'(q, A) & \text{if } q \in Q' \end{cases}$$

NBA accept ω -regular languages

For each NBA \mathcal{A} : $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular

Bernd Finkbeiner

Verification – Lecture 9

14

Proof

- Define $\mathcal{L}_{qq'} = \{ w \in \Sigma^* \mid q' \in \delta^*(q, w) \}.$
- Consider a word $\sigma \in \mathcal{L}(\mathcal{A})$ and an accepting run $q_0q_1q_2...$ for σ in \mathcal{A} .
- Hence, $q_i = q \in F$ for infinitely many indices $i: i_0, i_1, i_2, \ldots$
- Divide σ in subwords $\sigma = w_1 w_2 w_3 \dots$ such that

$$\sigma = \underbrace{w_0}_{\in \mathcal{L}_{q_0q}} \underbrace{w_1}_{\in \mathcal{L}_{qq}} \underbrace{w_2}_{\in \mathcal{L}_{qq}} \underbrace{w_3}_{\in \mathcal{L}_{qq}} \cdots$$

• Hence,

$$\sigma \in \bigcup_{q_0 \in Q_0, q \in F} \mathcal{L}_{q_0 q} (\mathcal{L}_{qq} \setminus \{\epsilon\})^{\omega},$$

which is ω -regular.

Proof (cont'd)

• On the other hand, any word

$$\sigma = \underbrace{w_0}_{\in \mathcal{L}_{q_0q}} \underbrace{w_1}_{\in \mathcal{L}_{qq}} \underbrace{w_2}_{\in \mathcal{L}_{qq}} \underbrace{w_3}_{\in \mathcal{L}_{qq}} \cdots$$

has an accepting run in \mathcal{A} .

• Hence, $\mathcal{L}_{\omega}(\mathcal{A})$ agrees with the ω -regular language

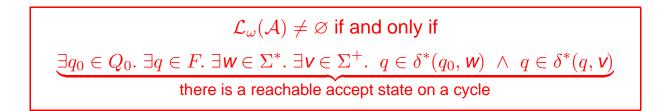
$$\sigma \in \bigcup_{q_0 \in Q_0, q \in F} \mathcal{L}_{q_0 q} . (\mathcal{L}_{qq} \smallsetminus \{\epsilon\})^{\omega}.$$

Bernd Finkbeiner

Verification – Lecture 9

16

Checking non-emptiness



The emptiness problem for NBA \mathcal{A} can be solved in time $\mathcal{O}(|\mathcal{A}|)$

Non-blocking NBA

- NBA \mathcal{A} is *non-blocking* if $\delta(q, A) \neq \emptyset$ for all q and $A \in \Sigma$
 - for each input word there exists an infinite run
- For each NBA A there exists a non-blocking NBA *trap*(A) with:

-
$$|trap(\mathcal{A})| = \mathcal{O}(|\mathcal{A}|)$$
 and $\mathcal{A} \equiv trap(\mathcal{A})$

• For
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$
 let $trap(\mathcal{A}) = (Q', \Sigma, \delta', Q_0, F)$ with:
- $Q' = Q \cup \{q_{trap}\}$ where $\{q_{trap}\} \notin Q$
- $\delta'(q, \mathcal{A}) = \begin{cases} \delta(q, \mathcal{A}) &: \text{ if } q \in Q \text{ and } \delta(q, \mathcal{A}) \neq \emptyset \\ \{q_{trap}\} &: \text{ otherwise} \end{cases}$

Bernd Finkbeiner

Verification - Lecture 9

18

Deterministic BA

Büchi automaton \mathcal{A} is called *deterministic* if

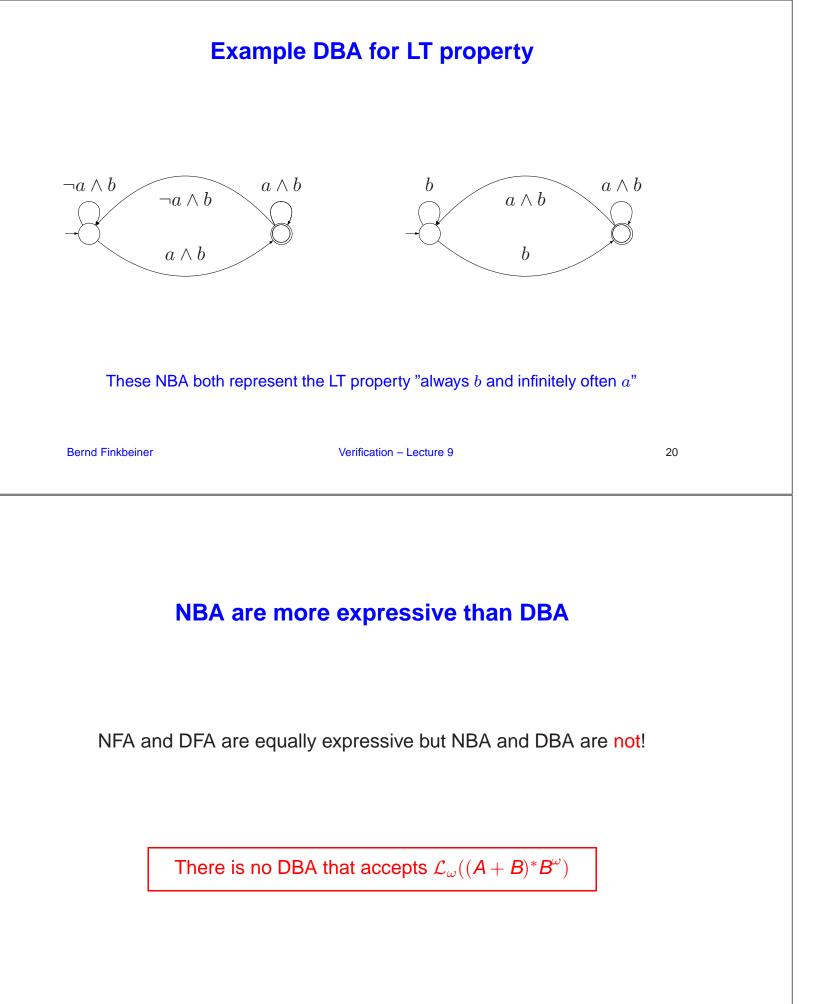
$$|Q_0| \leq 1$$
 and $|\delta(q, A)| \leq 1$ for all $q \in Q$ and $A \in \Sigma$

DBA $\mathcal A$ is called *total* if

 $|Q_0| = 1$ and $|\delta(q, A)| = 1$ for all $q \in Q$ and $A \in \Sigma$

total DBA provide unique runs for each input word

Verification - Lecture 9



Proof

- Proof by contradiction. Assume that $\mathcal{L} = \mathcal{L}_{\omega}((A + B)^*B^{\omega}) = \mathcal{L}_{\omega}(A)$ for some DBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$.
- Since \mathcal{A} is deterministic, we consider δ^* a function $Q \times \Sigma^* \to Q$.
- Since $B^{\omega} \in \mathcal{L}$, there exists an $n_1 \in \mathbb{N}_{\geq 1}$, such that

$$q_1 := \delta^*(q_0, B^{n_1}) \in F.$$

• Since $B^{n_1}AB^{\omega} \in \mathcal{L}$, there exists an $n_2 \in \mathbb{N}_{\geq 1}$, such that

$$q_2 := \delta^*(q_0, B^{n_1}AB^{n_2}) \in F.$$

Bernd Finkbeiner

Verification – Lecture 9

22

Proof (cont'd)

• Continuing this process, we obtain an infinite sequence of numbers n_i and states q_i such that

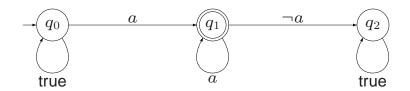
 $q_i := \delta^*(q_0, B^{n_1}AB^{n_2}A\dots B^{n_{i-1}}AB^{n_i}) \in F.$

- Since A has only finitely many states, there exist i, j, such that i < j and $q_i = q_j$.
- Thus, $\ensuremath{\mathcal{A}}$ has an accepting run on

$$w := B^{n_1} A B^{n_2} A \dots A B^{n_i} (A B^{n_{i+1}} A \dots A B^{n_j})^{\omega}.$$

• However, $w \notin \mathcal{L}$. Contradiction.

The need for nondeterminism



let $\{a\} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{\}$ and $B = \{a\}$ "eventually forever a" equals $(A + B)^* B^\omega = (\{\} + \{a\})^* \{a\}^\omega$

Bernd Finkbeiner

Verification - Lecture 9

24

Generalized Büchi automata

- NBA are as expressive as ω -regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, and Streett automata
 - generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct acceptance criterion
 - a GNBA requires to visit several sets F_1, \ldots, F_k ($k \ge 0$) infinitely often
 - for k=0, all runs are accepting
 - for k=1 this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
 - but they are equally expressive as NBA

Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{ F_1, \dots, F_k \}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{\mathbf{A} \in \Sigma} |\delta(q, \mathbf{A})|$$

Bernd Finkbeiner

Verification – Lecture 9

26

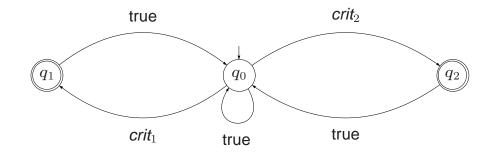
Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:

- $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leqslant i$

- Run $q_0 q_1 \dots$ is *accepting* if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many *i*
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- The accepted language of \mathcal{G} :
 - $\mathcal{L}_{\omega}(\mathcal{G}) = \left\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \right\}$
- GNBA \mathcal{G} and \mathcal{G}' are *equivalent* if $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$

Example



 $\mathcal{F} = \{F_1, F_2\}; F_1 = \{q_1\}; F_2 = \{q_2\}$

A GNBA for the property "both processes are infinitely often in their critical section"

Bernd Finkbeiner

Verification – Lecture 9

28

From GNBA to NBA

For any GNBA ${\mathcal G}$ there exists an NBA ${\mathcal A}$ with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}