Verification – Lecture 26 Zones and Difference Bound Matrices

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

TCTL model checking

• TCTL model-checking problem: $TA \models \Phi$ for non-Zeno TA

 $\underbrace{TA \models \Phi}_{\text{timed automaton}} \quad \text{iff} \quad \underbrace{S(TA) \models \Phi}_{\text{infinite state graph}}$

- Idea: consider a finite region graph RG(TA)
- Transform TCTL formula Φ into an "equivalent" CTL-formula $\widehat{\Phi}$
- Then: $TA \models_{TCTL} \Phi$ iff $RG(TA) \models_{CTL} \widehat{\Phi}$

finite state graph

Clock equivalence

Impose an equivalence, denoted \cong , on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA and Φ :

 $\eta \cong \eta' \; \Rightarrow \; (\eta \models g \quad \text{iff} \quad \eta' \models g)$

- no diagonal clock constraints are considered
- all the constraints in TA and Φ are thus either of the form $x \leqslant c \text{ or } x < c$
- (B) Time-divergent paths emanating from equivalent states are equivalent
 - this property guarantees that equivalent states satisfy the same path formulas
- (C) The number of equivalence classes under \cong is finite

Bernd Finkbeiner

Verification – Lecture 26

REVIEW

Clock equivalence

Clock valuations $\eta, \eta' \in Eval(C)$ are equivalent, denoted $\eta \cong \eta'$, if:

(1) for any $x \in C$: $(\eta(x) > c_x) \land (\eta'(x) > c_x)$ or $(\eta(x) \leq c_x) \land (\eta'(x) \leq c_x)$

(2) for any $x \in C$: if $\eta(x), \eta'(x) \leq c_x$ then:

$$\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$$
 and $frac(\eta(x)) = 0$ iff $frac(\eta_2(x)) = 0$

(3) for any $x, y \in C$: if $\eta(x), \eta'(x) \leq c_x$ and $\eta(y), \eta'(y) \leq c_y$, then:

$$frac(\eta(x)) \leq frac(\eta(y))$$
 iff $frac(\eta'(x)) \leq frac(\eta'(y))$.

 $s\cong s'$ iff $\ell=\ell'$ and $\eta\cong\eta'$

Regions

• The *clock region* of $\eta \in Eval(C)$, denoted $[\eta]$, is defined by:

 $[\eta] = \{ \eta' \in \textit{Eval}(C) \mid \eta \cong \eta' \}$

• The state region of $s = \langle \ell, \eta \rangle \in S(TA)$ is defined by:

 $[s] \ = \ \langle \ell, [\eta] \rangle \ = \ \{ \ \langle s, \eta' \rangle \mid \eta' \in [\eta] \ \}$

Bernd Finkbeiner

Verification – Lecture 26

REVIEW

4

Canonical representation of regions

- Each clock region can be uniquely represented
- For each clock x a term of the form (where $n \in \mathbb{N}$ and $n < c_x$):

```
- x = n, or

- n < x < n+1, or

- x > c_x
```

• For each pair of clocks x, y a term of the form:

-
$$x - y < 0$$
, or
- $x - y = n$, or
- $n < x - y < n+1$, or
- $x - y > c_x$

- r' is the successor (clock) region of r, denoted r' = succ(r), if either:
 - 1. $r = r_{\infty}$ and r = r', or
 - 2. $r \neq r_{\infty}$, $r \neq r'$ and $\forall \eta \in r$:

 $\exists d \in \mathbb{R}_{>0}. \ (\eta + d \in r' \quad \text{and} \quad \forall 0 \leqslant d' \leqslant d. \ \eta + d' \in r \cup r')$

• The successor region: $succ(\langle \ell, r \rangle) = \langle \ell, succ(r) \rangle$

Region Graph

For non-Zeno $TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$ with $S(TA) = (Q, Q_0, E, L)$ let $RG(TA, \Phi) = (Q', Q'_0, E', L')$ with

- $Q' = Q/\cong = \{ [q] \mid q \in Q \} \text{ and } Q'_0 = \{ [q] \mid q \in Q_0 \},$
- $L'(\langle \ell, r \rangle) = L(\ell) \cup \{ g \in AP' \setminus AP \mid r \models g \}$
- E' consists of two types of edges:
 - Discrete transitions: $\langle \ell, r \rangle \xrightarrow{\alpha} \langle \ell', \text{reset } D \text{ in } r \rangle$ if $\ell \xrightarrow{g:\alpha,D} \ell'$ and $r \models g$ and reset D in $r \models inv(\ell')$; - Delay transitions: $\langle \ell, r \rangle \xrightarrow{\tau} \langle \ell, succ(r) \rangle$
 - if $r \models inv(\ell)$ and $succ(r) \models inv(\ell)$

Bernd Finkbeiner

Verification – Lecture 26

REVIEW

8

Example: simple light switch

- use z, z' and so on to range over zones
- The state zone of $s = \langle \ell, \eta \rangle \in S(TA)$ is $\langle \ell, z \rangle$ with $\eta \in z$

• z' is the successor (clock) zone of z, denoted $z' = z^{\uparrow}$, if:

$$- \,\, z^{\uparrow} \,\, = \,\, \{ \, \eta + d \mid \eta \in z, d \in \mathbb{R}_{>0} \, \}$$

- z' is the zone obtained from z by *resetting* clocks D:
 - reset D in $z = \{ reset D in \eta \mid \eta \in z \}$

- $Q = Loc \times Zone(C)$ and $Q_0 = \{ \langle \ell, z_0 \rangle \mid \ell \in Loc_0 \}$
- $\bullet \ L(\langle \ell,z\rangle)=L(\ell)\,\cup\,\{\,g\mid g\in z\,\}$
- *E* consists of two types of edges:
 - Discrete transitions: $\langle \ell, z \rangle \xrightarrow{\alpha} \langle \ell', \text{reset } D \text{ in } (z \land g) \land inv(\ell') \rangle$ if $\ell \xrightarrow{g:\alpha,D} \ell'$, and
 - Delay transitions: $\langle \ell, z \rangle \xrightarrow{\tau} \langle \ell, z^{\uparrow} \wedge inv(\ell) \rangle$.

Correctness (1)

For timed automaton *TA* and any initial state $\langle \ell, \eta_0 \rangle$:

• Soundness:

$$\underbrace{\langle \ell, \{\eta_0\} \rangle \to^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \quad \text{implies} \quad \underbrace{\langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle}_{\text{in } S(TA)} \text{ for all } \eta' \in z'$$

• Completeness:

$$\underbrace{\langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle}_{\text{in } S(TA)} \quad \text{implies} \quad \underbrace{\langle \ell, \{\eta_0\} \rangle \to^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \text{ for some } z' \text{ with } \eta' \in z'$$

Bernd Finkbeiner
$$\text{Verification - Lecture 26} \qquad 16$$

Zone normalization

- To obtain a finite representation, *zone normalization* is employed
- For zone z, $norm(z) = \{ \eta \mid \eta \cong \eta', \eta' \in z \}$
 - where \cong is the clock equivalence
- There can only be finitely many normalized zones
- $\langle \ell, z \rangle \to_{norm} \langle \ell', norm(z') \rangle$ if $\langle \ell, z \rangle \to \langle \ell', z' \rangle$

REVIEW

Correctness (2)

For timed automaton *TA* and any initial state $\langle \ell, \eta \rangle$:

• Soundness:

$$\langle \ell, \{\eta_0\} \rangle \to_{norm}^* \langle \ell', z' \rangle \quad \text{implies} \quad \langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle$$

- for all $\eta' \in z'$ such that $\forall x. \eta'(x) \leqslant c_x$
- Completeness:
 - $\langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle \text{ with } \forall x. \eta'(x) \leqslant c_x \quad \text{implies} \quad \langle \ell, \{\eta_0\} \rangle \to^*_{norm} \langle \ell', z' \rangle$
 - for some z' such that $\eta' \in z'$
- Finiteness: the transition relation \rightarrow_{norm} is finite

Bernd Finkbeiner

Verification – Lecture 26

18

REVIEW

Forward reachability algorithm

od

return "not reachable"!

Representing zones

- Let 0 be a clock with constant value 0; let $C_0 = C \cup \{0\}$
- Any zone $z \in Zone(C)$ can be written as:
 - conjunction of constraints x y < n or $x y \leq n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x y \leq n$ and $x y \leq m$ take only $x y \leq \min(n, m)$
 - \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints
- Example:
 - $x \mathbf{0} < 20 \land y \mathbf{0} \leqslant 20 \land y x \leqslant 10 \land x y \leqslant -10 \land \mathbf{0} z < 5$
- Store each such constraint in a matrix
 - this yields a *difference bound matrix*

Pornd	Einkhoiner
Deniu	FILKDeiner

Verification – Lecture 26

20

REVIEW

Difference bound matrices

- Zone z over C is represented by DBM Z of cardinality $|C+1| \cdot |C+1|$
 - for $C = x_1, \ldots, x_n$, let $C_0 = \{x_0, x_1, \ldots, x_n\}$ with $x_0 = 0$
 - $\mathbf{Z}(i, j) = (c, \preceq)$ if and only if $x_i x_j \preceq c$
- Definition of **Z** for zone *z*:
 - for $x_i x_j \preceq c$ let $\mathbf{Z}(i, j) = (c, \preceq)$
 - if $x_i x_j$ is unbounded in z, set $\mathbf{Z}(i, j) = \infty$
 - $Z(0, i) = (\leqslant, 0)$ and $Z(i, i) = (\leqslant, 0)$
- Operations on bounds:

-
$$(c, \preceq) < \infty$$
, $(c, <) < (c, \leqslant)$, and $(c, \preceq) < (c', \preceq')$ if $c < c'$
- $c + \infty = \infty$, $(c, \leqslant) + (c', \leqslant) = (c+c', \leqslant)$ and $(c, <) + (c', \leqslant) = (c+c', <)$

Canonical DBMs

- A zone *z* is in *canonical form* if and only if:
 - no constraint in z can be strengthened without reducing [[z]] = { $\eta \mid \eta \in z$ }
- For each zone $z: \exists$ a *unique* and *equivalent* zone in canonical form
- Represent zone z by a *weighted digraph* G = (V, E, w) where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j x_i \preceq c$ is a constraint in z
 - $w(x_i, x_j) = (\preceq, c)$ whenever $x_j x_i \preceq c$ is a constraint in z
- Zone *z* is in *canonical form* if and only if DBM **Z** satisfies:
 - $\mathbf{Z}(i,j) \leqslant \mathbf{Z}(i,k) + \mathbf{Z}(k,j)$ for any $x_i, x_j, x_k \in C_0$
- Compute canonical zone?
 - use *Floyd-Warshall*'s all-pairs SP algorithm (time $\mathcal{O}(|C_0|^3)$)

```
Bernd Finkbeiner
```

Verification – Lecture 26

22

REVIEW

Minimal constraint systems

- A zone may contain *redundant* constraints
 - e.g., in x-y < 2, y-z < 5, and x-z < 7, constraint x-z < 7 is redundant
- Reduce memory usage: consider *minimal* constraint systems
 - e.g., $x y \leq 0, y z \leq 0, z x \leq 0, x 0 \leq 3$, and 0 x < -2
 - is a minimal representation of a zone in canonical form with 12 constraints
- For each zone: \exists a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
 - $x_i \xrightarrow{(n, \preceq)} x_j$ is redundant if an alternative path from x_i to x_j has weight at most (n, \preceq)
 - it suffices to consider alternative paths of length two

zero cycles require a special treatment

Main operations on DBMs (1)

- Nonemptiness: is $\llbracket \mathbf{Z} \rrbracket \neq \varnothing$?
 - search for negative cycles in the graph representation of Z, or
 - mark Z when upper bound of some clock is set to value < its lower bound
- Inclusion test: is $\llbracket \mathbf{Z} \rrbracket \subseteq \llbracket \mathbf{Z}' \rrbracket$?
 - for DBMs in canonical form, test whether $\mathbf{Z}(i, j) \leq \mathbf{Z}'(i, j)$, for all $i, j \in C_0$
- *Delay*: determine **Z**[↑]
 - remove the upper bounds on any clock, i.e.,
 - $\mathbf{Z}^{\uparrow}(i,0) = \infty$ and $\mathbf{Z}^{\uparrow}(i,j) = \mathbf{Z}(i,j)$ for $j \neq 0$

Bernd Finkbeiner

Verification – Lecture 26

24

REVIEW

Main operations on DBMs (2)

- Conjunction: $z \wedge (x_i x_j \preceq n)$
 - if $(n, \preceq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \preceq)$ else do nothing
 - put Z back into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only $\mathbf{Z}(i,j)$ changed)
- Clock reset: $x_i := 0$
 - $\mathbf{Z}(i, j) := \mathbf{Z}(0, j)$ and $\mathbf{Z}(j, i) := \mathbf{Z}(j, 0)$
- Normalization
 - remove all bounds $x-y \preceq m$ for which $(m, \preceq) > (c_x, \leqslant)$, and
 - set all bounds $x-y \preceq m$ with $(m, \preceq) < (-c_y, <)$ to $(-c_y, <)$
 - put the DBM back into canonical form (Floyd-Warshall)