Verification – Lecture 24 Timed Automata

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Timed automaton

A timed automaton is a tuple

$$TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- $L: Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\bullet \ \leadsto \subseteq \ \textit{Loc} \times \textit{CC}(C) \times \textit{Act} \times 2^C \times \textit{Loc} \text{ is a transition relation, and}$
- ullet inv: Loc o CC(C) is an invariant-assignment function

Clock constraints

• *Clock constraints* over set *C* of clocks are defined by:

$$g ::=$$
 true $\left| \begin{array}{c|c} x < c & x - y < c & x \leqslant c & x - y \leqslant c & \neg g & g \land g \end{array} \right|$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let CC(C) denote the set of clock constraints over C
- shorthands: $x \geqslant c$ denotes $\neg (x < c)$ and $x \in [c_1, c_2)$ or $c_1 \leqslant x < c_2$ denotes $\neg (x < c_1) \land (x < c_2)$
- Atomic clock constraints do not contain true, ¬ and ∧
 - let ACC(C) denote the set of atomic clock constraints over C
- Simplification: In the following, we assume constraints are *diagonal-free*, i.e., do neither contain $x y \le c$ nor x y < c.

Bernd Finkbeiner Verification – Lecture 24

REVIEW

2

Intuitive interpretation

- Edge $\ell \xrightarrow{g:\alpha,C'} \ell'$ means:
 - action α is enabled once guard g holds
 - when moving from location ℓ to ℓ' , any clock in C' will be reset to zero
- $inv(\ell)$ constrains the amount of time that may be spent in location ℓ
 - the location ℓ must be left before the invariant $\mathit{inv}(\ell)$ is violated

Guards versus location invariants

The effect of a lowerbound guard:

Bernd Finkbeiner Verification – Lecture 24 4

REVIEW

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Guards versus location invariants

The effect of a guard and an invariant:

Bernd Finkbeiner Verification – Lecture 24 6

REVIEW

Arbitrary clock differences

This is impossible to model in a discrete-time setting

Composing timed automata

Let $TA_i = (Loc_i, Act_i, C_i, \leadsto_i, Loc_{0,i}, inv_i, AP, L_i)$ and H an action-set

 $TA_1 \mid_H TA_2 = (Loc, Act_1 \cup Act_2, C, \rightsquigarrow, Loc_0, inv, AP, L)$ where:

- $Loc = Loc_1 \times Loc_2$ and $Loc_0 = Loc_{0,1} \times Loc_{0,2}$ and $C = C_1 \cup C_2$
- $\mathit{inv}(\langle \ell_1, \ell_2 \rangle) = \mathit{inv}_1(\ell_1) \ \land \ \mathit{inv}_2(\ell_2) \ \mathsf{and} \ L(\langle \ell_1, \ell_2 \rangle) = L_1(\ell_1) \cup L_2(\ell_2)$
- $\bullet \ \, \sim \text{ is defined by the inference rules: for } \alpha \in H \quad \frac{\ell_1 \overset{g_1:\alpha,D_1}{\sim} \ell_1' \ \, \wedge \ \, \ell_2 \overset{g_2:\alpha,D_2}{\sim} \ell_2'}{\langle \ell_1,\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle}{\langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2 \cup D_2}{\sim} \langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2' \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle} \\ \frac{\langle \ell_1,\ell_2 \rangle \overset{g_1 \wedge g_2:\alpha,D_2}{\sim} \langle \ell_1',\ell_2 \rangle}$

$$\text{for } \alpha \not\in H : \frac{\ell_1 \overset{g:\alpha,D}{\leadsto} \ell_1'}{\langle \ell_1, \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \overset{g:\alpha,D}{\leadsto} \ell_2'}{\langle \ell_1, \ell_2 \rangle}$$

Bernd Finkbeiner Verification – Lecture 24 8

Clock valuations

- ullet A *clock valuation* v for set C of clocks is a function $v:C\longrightarrow \mathbb{R}_{\geqslant 0}$
 - assigning to each clock $x \in C$ its current value v(x)
- Clock valuation v+d for $d \in \mathbb{R}_{\geq 0}$ is defined by:
 - (v+d)(x) = v(x) + d for all clocks $x \in C$
- Clock valuation reset x in v for clock x is defined by:

$$(\operatorname{reset} x \ \operatorname{in} \ v)(y) = \left\{ \begin{array}{ll} v(y) & \text{ if } y \neq x \\ 0 & \text{ if } y = x. \end{array} \right.$$

- reset x in (reset y in v) is abbreviated by reset x, y in v

Timed automaton semantics

For timed automaton $TA = (Loc, Act, C, \leadsto, Loc_0, inv, AP, L)$: state graph $S(TA) = (Q, Q_0, E, L')$ over AP' where:

- $Q = \textit{Loc} \times \textit{val}(C)$, state $s = \langle \ell, v \rangle$ for location ℓ and clock valuation v
- $Q_0 = \{ \langle \ell_0, v_0 \rangle \mid \ell_0 \in Loc_0 \land v_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- $L'(\langle \ell, v \rangle) = L(\ell) \cup \{ g \in ACC(C) \mid v \models g \}$
- E is the edge set defined on the next slide

Bernd Finkbeiner

Verification - Lecture 24

10

11

Timed automaton semantics

The edge set E consist of the following two types of transitions:

- Discrete transition: $\langle \ell, v \rangle \xrightarrow{\alpha} \langle \ell', v' \rangle$ if all following conditions hold:
 - there is an edge labeled $(g:\alpha,D)$ from location ℓ to ℓ' such that:
 - g is satisfied by v, i.e., $v \models g$
 - v' = v with all clocks in D reset to 0, i.e., $v' = \operatorname{reset} D$ in v
 - v' fulfills the invariant of location ℓ' , i.e., $v' \models \mathit{inv}(\ell')$
- Delay transition: $\langle \ell, v \rangle \xrightarrow{d} \langle \ell, v+d \rangle$ for positive real d
 - if for any $0 \leqslant d' \leqslant d$ the invariant of ℓ holds for v+d', i.e. $v+d' \models \mathit{inv}(\ell)$

Time divergence

- Let for any t < d, for fixed $d \in \mathbb{R}_{>0}$, clock valuation $\eta + t \models \mathit{inv}(\ell)$
- A possible execution fragment starting from the location ℓ is:

$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta + d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta + d_1 + d_2 \rangle \xrightarrow{d_3} \langle \ell, \eta + d_1 + d_2 + d_3 \rangle \xrightarrow{d_4} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + \dots$ converges towards d
- such path fragments are called time-convergent
- ⇒ time advances only up to a certain value
- Time-convergent execution fragments are unrealistic and ignored
 - much like unfair paths (as we will see later on)

Bernd Finkbeiner Verification – Lecture 24 12

Time divergence

- Infinite path fragment π is *time-divergent* if $ExecTime(\pi) = \infty$
- The function $Exec\ Time: Act \cup \mathbb{R}_{>0} \to \mathbb{R}_{\geqslant 0}$ is defined as:

$$ExecTime(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = d \in \mathbb{R}_{>0} \end{cases}$$

• For infinite execution fragment $\rho = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in S(TA) let:

$$ExecTime(\rho) = \sum_{i=0}^{\infty} ExecTime(\tau_i)$$

- for path fragment π in S(TA) induced by ρ : $ExecTime(\pi) = ExecTime(\rho)$
- For state s in S(TA): $Paths_{div}(s) = \{ \pi \in Paths(s) \mid \pi \text{ is time-divergent } \}$

Example: light switch

The path π in S(Switch) in which on- and of-periods of one minute alternate:

$$\pi = \langle off, 0 \rangle \langle off, 1 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \langle off, 2 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \dots$$

is *time-divergent* as $ExecTime(\pi) = 1 + 1 + 1 + \ldots = \infty$.

The path:

$$\pi' = \langle off, 0 \rangle \langle off, 1/2 \rangle \langle off, 3/4 \rangle \langle off, 7/8 \rangle \langle off, 15/16 \rangle \dots$$

is *time-convergent*, since $ExecTime(\pi') = \sum_{i\geqslant 1} \left(\frac{1}{2}\right)^i = 1 < \infty$

Bernd Finkbeiner Verification – Lecture 24 14

Timelock

- State $s \in S(TA)$ contains a *timelock* if $Paths_{div}(s) = \varnothing$
 - there is no behavior in s where time can progress ad infinitum
 - clearly: any terminal state contains a timelock (but also non-terminal states may do)
 - terminal location does not necessarily yield a state with timelock (e.g. inv = true)
- TA is timelock-free if no state in Reach(S(TA)) contains a timelock
- Timelocks are considered as modeling flaws that should be avoided

Zenoness

- A TA that performs infinitely many actions in finite time is Zeno
- Path π in S(TA) is Zeno if:
 - it is time-convergent, and
 - infinitely many actions $\alpha \in Act$ are executed along π
- TA is non-Zeno if there does not exist an initial Zeno path in S(TA)
 - any π in S(TA) is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as modeling flaws that should be avoided

Bernd Finkbeiner

Verification - Lecture 24

16

A sufficient criterion for Non-Zenoness

Let TA with set C of clocks such that for every control cycle:

$$\ell_0 \overset{g_1:\alpha_1,C_1}{\leadsto} \ell_1 \overset{g_2:\alpha_2,C_2}{\leadsto} \dots \overset{g_n:\alpha_n,C_n}{\leadsto} \ell_n$$

there exists a clock $x \in C$ such that:

- 1. $x \in C_i$ for some $0 < i \leqslant n$, and
- 2. there exists a constant $c \in \mathbb{N}_{>0}$ such that for all clock evaluations η :

$$\eta(x) < c \text{ implies } (\eta \not\models g_j \text{ or } \eta \not\models \mathit{inv}(\ell_j)), \text{ for some } 0 < j \leqslant n$$

Then: TA is non-Zeno

Timelock, time-divergence and Zenoness

 A timed automaton is only considered an adequate model of a timecritical system if it is:

non-Zeno and timelock-free

• Time-convergent paths will be explicitly excluded from the analysis.

Bernd Finkbeiner Verification – Lecture 24 18

Timed CTL

Syntax of TCTL *state-formulas* over *AP* and set *C*:

$$\Phi ::= \mathsf{true} \quad \left| \begin{array}{c|c} a & g & \Phi \land \Phi \end{array} \right| \quad \neg \Phi \quad \left| \begin{array}{c|c} \exists \varphi & \forall \varphi \end{array} \right|$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path-formula defined by:

$$\varphi ::= \Phi \cup^{J} \Phi$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals

Forms of J: [n, m], (n, m], [n, m) or (n, m) for $n, m \in \mathbb{N}$ and $n \leqslant m$

for right-open intervals, $m=\infty$ is also allowed

Some abbreviations

•
$$\diamondsuit^J \Phi = \operatorname{true} \mathsf{U}^J \Phi$$

$$\bullet \ \exists \Box^J \Phi \ = \ \neg \forall \diamondsuit^J \, \neg \Phi \quad \text{and} \quad \forall \Box^J \Phi \ = \ \neg \exists \diamondsuit^J \, \neg \Phi$$

$$\bullet \ \Diamond \Phi = \Diamond^{[0,\infty)} \, \Phi \quad \text{and} \quad \Box \, \Phi = \Box^{[0,\infty)} \, \Phi$$

Bernd Finkbeiner Verification – Lecture 24 20

Semantics of TCTL

For state $s = \langle \ell, \eta \rangle$ in S(TA) the satisfaction relation \models is defined by:

```
\begin{array}{lll} s \models \mathsf{true} \\ s \models a & \mathsf{iff} & a \in L(\ell) \\ s \models g & \mathsf{iff} & \eta \models g \\ s \models \neg \Phi & \mathsf{iff} & \mathsf{not} \, s \models \Phi \\ s \models \Phi \land \Psi & \mathsf{iff} & (s \models \Phi) \, \mathsf{and} \, (s \models \Psi) \\ s \models \exists \varphi & \mathsf{iff} & \pi \models \varphi \, \mathsf{for} \, \mathsf{some} \, \pi \in \mathit{Paths}_{\mathit{div}}(s) \\ s \models \forall \varphi & \mathsf{iff} & \pi \models \varphi \, \mathsf{for} \, \mathsf{all} \, \pi \in \mathit{Paths}_{\mathit{div}}(s) \end{array}
```

path quantification over time-divergent paths only

The \Longrightarrow relation

For infinite path fragments in S(TA) performing ∞ many actions let:

$$s_0 \stackrel{d_0}{\Longrightarrow} s_1 \stackrel{d_1}{\Longrightarrow} s_2 \stackrel{d_2}{\Longrightarrow} \dots$$
 with $d_0, d_1, d_2 \dots \geqslant 0$

denote the equivalence class containing all infinite path fragments induced by execution fragments of the form:

$$s_0 \overset{d_0^1}{\underset{\text{time passage of } \\ d_0 \text{ time-units}}{\xrightarrow{d_0^{k_0}}} s_0 + d_0 \overset{\alpha_1}{\longrightarrow} s_1 \overset{d_1^1}{\underset{\text{time passage of } \\ d_1 \text{ time-units}}{\xrightarrow{d_1^{k_1}}} s_1 + d_1 \overset{\alpha_2}{\longrightarrow} s_2 \overset{d_2^1}{\underset{\text{time passage of } \\ d_2 \text{ time-units}}{\xrightarrow{d_2^{k_2}}} s_2 + d_2 \overset{\alpha_3}{\longrightarrow} \dots$$

where $k_i \in \mathbb{N}$, $d_i \in \mathbb{R}_{\geqslant 0}$ and $\alpha_i \in \mathit{Act}$ such that $\sum_{j=1}^{k_i} d_i^j = d_i$.

Notation: $s_i+d=\langle \ell_i, \eta_i+d \rangle$ where $s_i=\langle \ell_i, \eta_i \rangle$.

Bernd Finkbeiner Verification – Lecture 24 22

Semantics of TCTL

For time-divergent path $\pi \in s_0 \stackrel{d_0}{\Longrightarrow} s_1 \stackrel{d_1}{\Longrightarrow} \dots$

$$\pi \models \Phi \mathsf{U}^{J} \Psi$$

iff

 $\exists \, i \geqslant 0. \, s_i + d \models \Psi \text{ for some } d \in [0,d_i] \text{ with } \sum_{k=0}^{i-1} d_k + d \in J \text{ and }$

 $\forall j \leqslant i.\, s_j + d' \models \Phi \lor \Psi$ for every $d' \in [0,d_j]$ with $\sum_{j=0}^{j-1} d_k + d' \leqslant \sum_{k=0}^{j-1} d_k + d'$

Bernd Finkbeiner Verification – Lecture 24 23

TCTL-semantics for timed automata

- Let *TA* be a timed automaton with clocks *C* and locations *Loc*
- For TCTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$\mathit{Sat}(\Phi) \ = \ \{ \ s \in \mathit{Loc} \times \mathit{Eval}(C) \mid s \models \Phi \ \}$$

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

$$\mathit{TA} \models \Phi$$
 if and only if $orall \ell_0 \in \mathit{Loc}_0. \left< \ell_0, \eta_0 \right> \models \Phi$

where $\eta_0(x) = 0$ for all $x \in C$

Bernd Finkbeiner Verification – Lecture 24 24