Verification — Lecture 24
Timed Automata

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Timed automaton
A timed automaton is a tuple

TA = (Loc, Act,C,~, Locy, inv,AP,L) where:

Loc is a finite set of locations.

Locy C Locis a set of initial locations

C' is a finite set of clocks

o L:Loc— 24T is a labeling function for the locations
e ~ C Loc x CC(C) x Act x 2¢ x Loc s a transition relation, and

e inv: Loc — CC(C) is an invariant-assignment function

Bernd Finkbeiner Verification — Lecture 24 1

REVIEW

Clock constraints

e Clock constraints over set C of clocks are defined by:

g .= true ‘ r<c ‘ r—y<ec ‘ r<c ‘ rT—yY<cC ‘ —g ‘ gnNg

where ¢ € Nandclocks z,y € C

— rational constants would do; neither reals nor addition of clocks!

let CC(C') denote the set of clock constraints over C

— shorthands: =z > c denotes —(z < ¢) and xz € [c1,c2) OFrc1 < & < ¢
denotes = (z < ¢1) A (xz < ¢2)

e Atomic clock constraints do not contain true, — and A

— let ACC(C') denote the set of atomic clock constraints over C

e Simplification: In the following, we assume constraints are diagonal-free,
i.e., do neither containz — y < cnorxz — y < c.

Bernd Finkbeiner Verification — Lecture 24 2

REVIEW

Intuitive interpretation

e Edge /¢ 9:2.C", ' means:

— action « is enabled once guard g holds
— when moving from location £ to ¢’, any clock in C’ will be reset to zero

e inv(¢) constrains the amount of time that may be spent in location ¢

— the location ¢ must be left before the invariant inv(¢) is violated

Bernd Finkbeiner Verification — Lecture 24 3

REVIEW

Guards versus location invariants

The effect of a lowerbound guard:

I

value
of

—~ |8
8 |\WV
et

Bernd Finkbeiner Verification — Lecture 24 4

REVIEW

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Bernd Finkbeiner Verification — Lecture 24 5

REVIEW

Guards versus location invariants

The effect of a guard and an invariant:

I

value
of

—~ |8
8 |\WV
et

Bernd Finkbeiner Verification — Lecture 24 6

REVIEW

Arbitrary clock differences

- — - clock z
—— clock y
y > 2 T
clock ; 4
value |
z > 2 . ¥y 4
{z} -
| | 4

8 10
time ——=

This is impossible to model in a discrete-time setting

Bernd Finkbeiner Verification — Lecture 24 7

Composing timed automata
Let TA;, = (Loci,Acti,Ci,«»i, Locy ;, inv;, AP, Li) and H an action-set

TA: || TA; = (Loc, Acty U Acty, C,~, Locy, inv, AP, L) where:

e Loc= Loc; x Loc, and Locy = Locy 1 x Locy 2 and C'= Cp U Cqy

° inv((£1,€2>) = invl(él) A I.nVQ(fg) and L(<£1,£2>) = Ll(fl) U Lg(ﬁz)

‘0 glaDl E Al 9204D2€
e ~» is defined by the inference rules: fora € H 2
g1N\go:a,D1UDo e e,

<€1a£2> ~ < 1’ 2>
e g« D e e g, D e
fora & H: 1M; ! and 2MZ 2

(€1, L2) P57 (L, £2) (€1, £2) =57 (L1, £3)
Bernd Finkbeiner Verification — Lecture 24 8

Clock valuations

e A clock valuation v for set C' of clocks is a function v : C — Ry

— assigning to each clock z € C'its current value v(x)

e Clock valuation v+d for d € R is defined by:

- (v+d)(z) = v(x) 4 d for all clocks z € C

e Clock valuation reset x in v for clock z is defined by:

(reset z inv)(y) = { g@) :I z i i

— reset x in (reset y in v) is abbreviated by reset =, y in v

Bernd Finkbeiner Verification — Lecture 24 9

Timed automaton semantics

For timed automaton TA = (Loc, Act,C,~», Locy, inv, AP, L):
state graph S(TA) = (Q, Qo, E, L") over AP where:

e () = Loc x val(C), state s = (¢, v) for location ¢ and clock valuation v

Qo = {<£0,’Uo> | Eo < LOCO A ’Uo(x) =0forall x O}

o AP = AP U ACC(C)

LI((¢,v)) = L(£) U {g € ACC(C) [v = g}

E is the edge set defined on the next slide

Bernd Finkbeiner Verification — Lecture 24 10

Timed automaton semantics

The edge set E consist of the following two types of transitions:

e Discrete transition: (/,v) = (¢, v') if all following conditions hold:

— there is an edge labeled (g : a,, D) from location £ to ¢ such that:
— g is satisfied by v, i.e., v =g

— o' = v with all clocks in D resetto 0, i.e., v’ = reset D in v

— o fulfills the invariant of location ¢', i.e., v" |= inv(¢")

e Delay transition: (¢, v) % (¢, v+d) for positive real d

— ifforany 0 < d’ < d the invariant of £ holds for v+d’, i.e. v+d’ = inv(¥)

Bernd Finkbeiner Verification — Lecture 24 11

Time divergence

e Letforanyt < d, for fixed d € R+, clock valuation n+t = inv(¢)

e A possible execution fragment starting from the location / is:

(6,n) ~s (0, n+dy) ~25 (0, n+dy+ds) —%5 (0, n+dy+dotds) —Hs ..

— where d; > 0 and the infinite sequence d; + d2 + . . . converges towards d
— such path fragments are called time-convergent
= time advances only up to a certain value

e Time-convergent execution fragments are unrealistic and ignored

— much like unfair paths (as we will see later on)

Bernd Finkbeiner Verification — Lecture 24 12

Time divergence

Infinite path fragment = is time-divergent if ExecTime(m) = oo

The function EzecTime : ActU R~y — R is defined as:

0 ifr € Act

EzecTime(T) = { d ifr=de Ry

For infinite execution fragment p = sqg — 51 —2+ s5... In S(TA) let:

EzecTime(p) = Z EzecTime(T;)
i=0

— for path fragment 7 in S(TA) induced by p: ExecTime(w) = EzecTime(p)

For state s in S(TA): Paths;,(s) = { m € Paths(s) | = is time-divergent }

Bernd Finkbeiner Verification — Lecture 24 13

Example: light switch

The path 7 in S(Switch) in which on- and of-periods of one minute
alternate:

7w = {off,0) {off , 1) (on,0) (on, 1) (off , 1) {off , 2) {on,0) (on, 1) (off , 1) ...

is time-divergent as EzecTime(n) =14+ 1+14 ... = oc.
The path:

' = (off,0) (off,1/2) {off,3/4) (off ,7/8) {off , 15/16) . ..

is time-convergent, since ExecTime(r') = 3 (1) =1< o0
i>1

Bernd Finkbeiner Verification — Lecture 24 14

Timelock

e State s € S(TA) contains a timelock it Paths,;,(s) = @

— there is no behavior in s where time can progress ad infinitum

— clearly: any terminal state contains a timelock (but also non-terminal states may
do)

— terminal location does not necessarily yield a state with timelock (e.g. inv = true)
e TAis timelock-free if no state in Reach(S(TA)) contains a timelock

e Timelocks are considered as modeling flaws that should be avoided

Bernd Finkbeiner Verification — Lecture 24 15

Zenohess

A TA that performs infinitely many actions in finite time is Zeno

Path 7 in S(TA) is Zeno if:

— it is time-convergent, and
— infinitely many actions a € Act are executed along =

TA is non-Zeno if there does not exist an initial Zeno path in S(TA)

— any m in S(TA) is time-divergent or
— is time-convergent with nearly all (i.e., all except for finitely many) transitions
being delay transitions

Zeno paths are considered as modeling flaws that should be avoided

Bernd Finkbeiner Verification — Lecture 24 16

A sufficient criterion for Non-Zenoness

Let TA with set C' of clocks such that for every control cycle:

g1:a1,C1 g2:a,Co gn:on,Cn
EO s 61 gs ce s En

there exists a clock x € C' such that:

1. x € C; forsome 0 < i < n, and

2. there exists a constant ¢ € N+ such that for all clock evaluations #:
n(x) < cimplies (n [~ g; or n = inv(¢;)), forsome 0 < j < n

Then: TA is non-Zeno

Bernd Finkbeiner Verification — Lecture 24 17

Timelock, time-divergence and Zenoness

e A timed automaton is only considered an adequate model of a time-
critical system if it is:

non-Zeno and timelock-free

e Time-convergent paths will be explicitly excluded from the analysis.

Bernd Finkbeiner Verification — Lecture 24 18

Timed CTL

Syntax of TCTL state-formulas over AP and set C'.

d :=true | a

g‘(I)/\CI)‘ —@‘Hcp‘ch
where a € AP, g € ACC(C) and ¢ is a path-formula defined by:
p=dU’' P

where J C Ry is an interval whose bounds are naturals
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,m e Nandn < m

for right-open intervals, m = oo is also allowed

Bernd Finkbeiner Verification — Lecture 24 19

Some abbreviations

o O/ = trueU’ @
e JO0/® = VO -d and VO = 307 =P

¢ P =00 and OP =00

Bernd Finkbeiner Verification — Lecture 24 20

Semantics of TCTL

For state s = (¢, n) in S(TA) the satisfaction relation |= is defined by:

s = true

skEa iff ae L({)

sty iff nig

sE-® iff notsk=®

sEOAY iff (s ®)and (s = V)

s = dp iff 7 = ¢ forsome n € Paths,(s)
s E Vo iff 7 = forall m e Pathsy,(s)

path quantification over time-divergent paths only

Bernd Finkbeiner Verification — Lecture 24 21

The — relation

For infinite path fragments in S(TA) performing co many actions let:

d d d .
So 2N S1 1>82 2>... with do,dl,dz...>o

denote the equivalence class containing all infinite path fragments
induced by execution fragments of the form:

ql d’go ay dl d]fl s dql dlzfQ o
So.#...—>,$0+d0—>81 ,4...—>,81-|—d1—)Sz,i...—>,82+d2—>
time passage of time passage of time passage of
d time-units dy time-units do time-units

where k; € IN, d; € R0 and a; € Act such that 3% d! = d;.

Notation: s;+d = <£z, nz+d> where s; = <£z, ’I7i>.

Bernd Finkbeiner Verification — Lecture 24 22

Semantics of TCTL

For time-divergent path 7 € sg o, S1 N

TE®U/ Y
iff
3i > 0.s;4+d |= U for some d € [0,d;] with Y1 _{dp +d € J

and
Vj <i.sj+d = ® VW forevery d’ € [0,d;] with Y odi +d' < Yo di +d

Bernd Finkbeiner Verification — Lecture 24 23

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C and locations Loc
e For TCTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {selocx EvallC) | s =}

e TA satisfies TCTL-formula @ iff ® holds in all initial states of TA:
TAlE=® ifandonlyif VY, € Locy. (Lo, m0) = P

where ng(z) =0forallz € C

Bernd Finkbeiner Verification — Lecture 24 24

