Verification - Lecture 21
 Quotienting Algorithms for Bisimulation

Bernd Finkbeiner - Sven Schewe
Rayna Dimitrova - Lars Kuhtz - Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Bisimulation equivalence

Let $S_{i}=\left(Q_{i}, Q_{0, i}, E_{i}, L_{i}\right), i=1,2$, be two state graphs over AP.
A bisimulation for $\left(S_{1}, S_{2}\right)$ is a binary relation $\mathcal{R} \subseteq Q_{1} \times Q_{2}$ such that:

1. $\forall q_{1} \in Q_{0,1} \exists q_{2} \in Q_{0,2} .\left(q_{1}, q_{2}\right) \in \mathcal{R}$ and
$\forall q_{2} \in Q_{0,2} \exists q_{1} \in Q_{0,1} .\left(q_{1}, q_{2}\right) \in \mathcal{R}$
2. for all states $q_{1} \in Q_{1}, q_{2} \in Q_{2}$ with $\left(q_{1}, q_{2}\right) \in \mathcal{R}$ it holds:
(a) $L_{1}\left(q_{1}\right)=L_{2}\left(q_{2}\right)$
(b) if $q_{1}^{\prime} \in \operatorname{Successors}\left(q_{1}\right)$ then there exists $q_{2}^{\prime} \in \operatorname{Successors}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
(c) if $q_{2}^{\prime} \in \operatorname{Successors}\left(q_{2}\right)$ then there exists $q_{1}^{\prime} \in \operatorname{Successors}\left(q_{1}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$ S_{1} and S_{2} are bisimilar, denoted $S_{1} \sim S_{2}$, if there exists a bisimulation for $\left(S_{1}, S_{2}\right)$

Coarsest bisimulation

\sim_{s} is an equivalence and the coarsest bisimulation for S

Quotient state graph

For $S=\left(Q, Q_{0}, E, L\right)$ and bisimulation $\sim_{s} \subseteq S \times S$ on S let

$$
S / \sim_{s}=\left(Q^{\prime}, Q_{0}^{\prime}, E^{\prime}, L^{\prime}\right) \text { be the quotient of } S \text { under } \sim_{s}
$$

where

- $Q^{\prime}=S / \sim_{s}=\left\{[q]_{\sim} \mid q \in Q\right\}$ with $[q]_{\sim}=\left\{q^{\prime} \in Q \mid q \sim_{s} q^{\prime}\right\}$
- $Q_{0}^{\prime}=\left\{[q] \sim \mid q \in Q_{0}\right\}$
- $E^{\prime}=\left\{\left([q]_{\sim},\left[q^{\prime}\right]_{\sim}\right) \mid\left(q, q^{\prime}\right) \in E\right\}$
- $L^{\prime}([q] \sim)=L(q)$

$$
\text { note that } S \sim S / \sim_{S} \quad \text { Why? }
$$

Bisimulation vs. CTL* and CTL equivalence

Let S be a finite state graph and s, s^{\prime} states in S
The following statements are equivalent:
(1) $s \sim_{s} s^{\prime}$
(2) s and s^{\prime} are CTL-equivalent, i.e., $s \equiv C T L s^{\prime}$
(3) s and s^{\prime} are CTL*-equivalent, i.e., $s \equiv_{C T L^{*}} s^{\prime}$
this is proven in three steps: $\equiv_{C T L} \subseteq \sim \subseteq \equiv_{C T L *} \subseteq \equiv$ CTL
important: equivalence is also obtained for any sub-logic containing \neg, \wedge, and $\exists \bigcirc$

The importance of this result

- CTL and CTL* equivalence coincide
- despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
- and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
- $S_{1} \models \Phi$ and $S_{2} \not \models \Phi$ implies $S_{1} \nsim S_{2}$
- You even do not need to use an until-operator!
- To check $S \models \Phi$, it suffices to check $S / \sim \models \Phi$

Bisimulation quotient state graph

For $S=\left(Q, Q_{0}, E, L\right)$ and bisimulation $\sim_{s} \subseteq Q \times Q$ on S let

$$
S / \sim_{s}=\left(Q^{\prime}, Q_{0}^{\prime}, E^{\prime}, L^{\prime}\right) \quad \text { be the quotient of } S \text { under } \sim_{s}
$$

where

- $Q^{\prime}=Q / \sim_{s}=\left\{[q]_{\sim} \mid q \in Q\right\}$ with $[q]_{\sim}=\left\{q^{\prime} \in Q \mid q \sim_{s} q^{\prime}\right\}$
- $Q_{0}^{\prime}=\left\{[q]_{\sim} \mid q \in Q_{0}\right\}$
- $E^{\prime}=\left\{\left([q]_{\sim},\left[q^{\prime}\right]_{\sim}\right) \mid\left(q, q^{\prime}\right) \in E\right\}$
- $L^{\prime}([q] \sim)=L(q)$

$$
\text { note that } S \sim S / \sim_{S}
$$

Quotient state graph / Partitioning

For $S=\left(Q, Q_{0}, E, L\right)$ and an equivalence relation $\sim \subseteq Q \times Q$ on S let $S / \sim=\left(Q^{\prime}, Q_{0}^{\prime}, E^{\prime}, L^{\prime}\right) \quad$ be the quotient of S under \sim, where

- $Q^{\prime}=Q / \sim=\left\{[q]_{\sim} \mid q \in Q\right\}$ with $[q]_{\sim}=\left\{q^{\prime} \in Q \mid q \sim q^{\prime}\right\}$
- $Q_{0}^{\prime}=\left\{[q]_{\sim} \mid q \in Q_{0}\right\}$
- $E^{\prime}=\left\{\left([q]_{\sim},\left[q^{\prime}\right]_{\sim}\right) \mid\left(q, q^{\prime}\right) \in E\right\}$
- $L^{\prime}([q] \sim)=L(q)$

A partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ of Q is a set of nonempty $\left(B_{i} \neq \varnothing\right)$ and pairwise disjoint blocks B_{i} that decompose $Q\left(Q=\biguplus_{i=1, \ldots k} B_{i}\right)$.
A partition defines an equivalence relation $\sim\left(\left(q, q^{\prime}\right) \in \sim \Leftrightarrow \exists Q_{i} \in \Pi . q, q^{\prime} \in B_{i}\right)$. Likewise, an equivalence relation \sim defines a partition $\Pi=Q / \sim$.

Blocks, Superblocks, and Stability

A partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ of Q is a set of nonempty ($B_{i} \neq \varnothing$) and pairwise disjoint blocks B_{i} that decompose $Q\left(Q=\biguplus_{i=1, \ldots, k} B_{i}\right)$.

A nonempty union $C=\biguplus_{i \in I} B_{i}$ of blocks is called a superblock.
A block B_{i} of a partition Π is called stable w.r.t. a set B if either $B_{i} \cap$ $\operatorname{Pre}(B)=\varnothing$, or $B_{i} \subseteq \operatorname{Pre}(B)$.

$$
(\operatorname{Pre}(B)=\{q \in Q \mid \text { Successors }(q) \cap B \neq \varnothing\})
$$

A partition Π is called stable w.r.t. a set B if all blocks of Π are.
Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks if, and only if, it is the quotient of a bisimulation relation ($\Pi=Q / \sim$).

Partition refinement

For two partitions $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ and $\Pi^{\prime}=\left\{B_{1}^{\prime}, \ldots, B_{j}^{\prime}\right\}$ of Q, we say that Π is finer than Π^{\prime} iff every block of Π^{\prime} is a superblock of Π.

For a given partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$, we call a (super)block C of Π a splitter of a block $B_{i} /$ the partition Π if B_{i} / Π is not stable w.r.t. C.

Refine $\left(B_{i}, C\right)$ denotes $\left\{B_{i}\right\}$ if B_{i} is stable w.r.t. C, and $\left\{B_{i} \cap \operatorname{Pre}(C), B_{i} \backslash\right.$ $\operatorname{Pre}(C)\}$ if C is a splitter of C.
$\operatorname{Refine}(\Pi, C)=\biguplus_{i=1, \ldots, k} \operatorname{Refine}\left(B_{i}, C\right)$.
Lemma 2. Refine (Π, C) is finer than Π.
Lemma 3. If Π is finer than Π^{\prime} then $\operatorname{Refine}(\Pi, C)$ is finer than $\operatorname{Refine}\left(\Pi^{\prime}, C\right)$.

Algorithms for bisimulation quotienting

Input: Transition system $S=\left(Q, Q_{0}, E, L\right)$
Output: Bisimulation quotient state graph

1. $\Pi=Q / \sim_{A P} \quad\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser than Q / \sim_{S}
(a) pick a block B that is a splitter of Π
(b) $\Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Correctness and termination

1. $\Pi=Q / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π

$$
\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)
$$

(a) pick a block B that is a splitter of Π
(b) $\Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Lemma 4. The algorithm terminates.
Lemma 5. The loop invariant holds initially.
Lemma 6. The loop invariant is preserved.
Theorem 7. The algorithm returns the quotient Q / \sim_{S} of the coarsest bisimulation \sim_{S}.

Complexity

1. $\Pi=Q / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π

$$
\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)
$$

(a) pick a block B that is a splitter of Π
(b) $\Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Lemma 8. $Q / \sim_{A P}$ can be constructed in time $\mathcal{O}(|Q| \cdot|A P|)$.
Proof Idea. Build tree that branches by the atomic propositions. The leafs are labeled with the elements of $Q / \sim_{A P}$.

The complexity of each refinement step depends on the strategy how B is picked.

Refinement complexity

2. while some block $B \in \Pi$ is a splitter of Π
(a) pick a block B that is a splitter of Π
(b) $\Pi=\operatorname{Refine}(\Pi, B)$

Trying all $B \in \Pi$ takes $\mathcal{O}(|E|)$ time.

- There may be $\mathcal{O}(|Q|)$ splits.

Corollary 9. The overall algorithm takes $\mathcal{O}(|Q| \cdot(|A P|+|E|))$ time.

Refinement complexity

2. while some block $B \in \Pi$ is a splitter of Π
(a) pick a block B that is a splitter of Π
(b) $\Pi=\operatorname{Refine}(\Pi, B)$

Trying all $B \in \Pi$ takes $\mathcal{O}(|E|)$ time.

- There may be $\mathcal{O}(|Q|)$ splits.

Corollary 9. The overall algorithm takes $\mathcal{O}(|Q| \cdot(|A P|+|E|))$ time.

An improved algorithm for bisimulation quotienting

Input: Transition system $S=\left(Q, Q_{0}, E, L\right)$
Output: Bisimulation quotient state graph

1. $\Xi=\{Q\}$
2. $\Pi=Q / \sim_{A P}$
3. while $\Xi \neq \Pi$
(a) Pick $B \in \Xi \backslash \Pi$
(b) Pick $B^{\prime} \in \Pi$ such that $B^{\prime} \subseteq B$ and $\left|B^{\prime}\right| \leqslant \frac{1}{2}|B|$
(c) $\Xi=(\Xi \backslash\{B\}) \cup\left\{B^{\prime}\right\} \cup\left\{B \backslash B^{\prime}\right\}$
(d) $\Pi=\operatorname{Refine}\left(\operatorname{Refine}\left(\Pi, B^{\prime}\right), B \backslash B^{\prime}\right)$
4. return Π

Termination

1. $\Xi=\{Q\}$
2. $\Pi=Q / \sim_{A P}$
3. while $\Xi \neq \Pi$
(a) Pick $B \in \Xi \backslash \Pi$
(b) Pick $B^{\prime} \in \Pi$ such that $B^{\prime} \subseteq B$ and $\left|B^{\prime}\right| \leqslant \frac{1}{2}|B|$
(c) $\Xi=(\Xi \backslash\{B\}) \cup\left\{B^{\prime}\right\} \cup\left\{B \backslash B^{\prime}\right\}$
(d) $\Pi=\operatorname{Refine}\left(\operatorname{Refine}\left(\Pi, B^{\prime}\right), B \backslash B^{\prime}\right)$
4. return Π

Lemma 10. The loop invariant Ξ is coarser than Π is coarser than Q / \sim_{S} holds.
Lemma 11. Ξ is strictly refined in every step of the while loop.

Correctness

1. $\Xi=\{Q\}$
2. $\Pi=Q / \sim_{A P}$
3. while $\Xi \neq \Pi$
(a) Pick $B \in \Xi \backslash \Pi$
(b) Pick $B^{\prime} \in \Pi$ such that $B^{\prime} \subseteq B$ and $\left|B^{\prime}\right| \leqslant \frac{1}{2}|B|$
(c) $\Xi=(\Xi \backslash\{B\}) \cup\left\{B^{\prime}\right\} \cup\left\{B \backslash B^{\prime}\right\}$
(d) $\Pi=\operatorname{Refine}\left(\operatorname{Refine}\left(\Pi, B^{\prime}\right), B \backslash B^{\prime}\right)$
until $\Xi=\Pi$
4. return Π

Lemma 12. If Π is finer than Π^{\prime} and Π^{\prime} is stable w.r.t. a set $C \subseteq Q$ than Π is stable w.r.t. C.
Proof Sketch. If $A \in \Pi$ is splitted and $\Pi^{\prime} \ni A^{\prime} \supseteq A$ than A^{\prime} is splitted.
Theorem 13. The algorithm returns the partition Q / \sim_{S} of the coarsest bisimulation \sim_{S}.
Proof Idea. Loop invariant: Π is stable w.r.t. every block in Ξ. $\Rightarrow \Pi$ is stable w.r.t. every block in $\Pi=\Xi$

