Verification – Lecture 21 Quotienting Algorithms for Bisimulation

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Bisimulation equivalence

Let $S_i = (Q_i, Q_{0,i}, E_i, L_i)$, i=1, 2, be two state graphs over *AP*.

A *bisimulation* for (S_1, S_2) is a binary relation $\mathcal{R} \subseteq Q_1 \times Q_2$ such that:

- 1. $\forall q_1 \in Q_{0,1} \exists q_2 \in Q_{0,2}. (q_1, q_2) \in \mathcal{R}$ and $\forall q_2 \in Q_{0,2} \exists q_1 \in Q_{0,1}. (q_1, q_2) \in \mathcal{R}$
- 2. for all states $q_1 \in Q_1$, $q_2 \in Q_2$ with $(q_1, q_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(q_1) = L_2(q_2)$
 - (b) if $q'_1 \in Successors(q_1)$ then there exists $q'_2 \in Successors(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$
 - (c) if $q_2' \in Successors(q_2)$ then there exists $q_1' \in Successors(q_1)$ with $(q_1', q_2') \in \mathcal{R}$

 S_1 and S_2 are bisimilar, denoted $S_1 \sim S_2$, if there exists a bisimulation for (S_1, S_2)

Coarsest bisimulation

 $\sim_{\,\rm S}$ is an equivalence and the coarsest bisimulation for $\,\rm S$

Sven Schewe

Verification – Lecture 21

2

REVIEW

Quotient state graph

For $S = (Q, Q_0, E, L)$ and bisimulation $\sim_S \subseteq S \times S$ on S let

 $S/\sim_{S} = (Q', Q'_{0}, E', L')$ be the *quotient* of S under \sim_{S}

where

•
$$Q' = S / \sim_{\mathcal{S}} = \{ [q]_{\sim} \mid q \in Q \} \text{ with } [q]_{\sim} = \{ q' \in Q \mid q \sim_{\mathcal{S}} q' \}$$

•
$$Q'_0 = \{ [q]_{\sim} \mid q \in Q_0 \}$$

- $E' = \{([q]_{\sim}, [q']_{\sim}) \mid (q, q') \in E\}$
- $L'([q]_{\sim}) = L(q)$

note that $S \sim S/\sim_S$ Why?

Bisimulation vs. CTL* and CTL equivalence

Let S be a *finite* state graph and s, s' states in S The following statements are equivalent: (1) $s \sim_S s'$ (2) s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$ (3) s and s' are CTL*-equivalent, i.e., $s \equiv_{CTL*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$ important: equivalence is also obtained for any sub-logic containing \neg , \land , and $\exists \bigcirc$

Sven Schewe

Verification – Lecture 21

4

REVIEW

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $S_1 \models \Phi$ and $S_2 \not\models \Phi$ implies $S_1 \not\sim S_2$
- You even do not need to use an until-operator!
- To check $S \models \Phi$, it suffices to check $S / \sim \models \Phi$

Bisimulation quotient state graph

For $S = (Q, Q_0, E, L)$ and bisimulation $\sim_S \subseteq Q \times Q$ on S let

 $S/\sim_{s} = (Q', Q'_{0}, E', L')$ be the *quotient* of S under \sim_{s}

where

•
$$Q' = Q/\sim_{s} = \{ [q]_{\sim} \mid q \in Q \} \text{ with } [q]_{\sim} = \{ q' \in Q \mid q \sim_{s} q' \}$$

•
$$Q'_0 = \{ [q]_{\sim} \mid q \in Q_0 \}$$

•
$$E' = \{([q]_{\sim}, [q']_{\sim}) \mid (q, q') \in E\}$$

• $L'([q]_{\sim}) = L(q)$

note that S	\sim	S/	$' \sim_{S}$
-------------	--------	----	--------------

6

Sven Schewe

Verification – Lecture 21

Quotient state graph / Partitioning

For $S = (Q, Q_0, E, L)$ and an *equivalence relation* $\sim \subseteq Q \times Q$ on S let

 $S/\sim = (Q', Q'_0, E', L')$ be the *quotient* of S under ~, where

- $Q' = Q/\sim = \{ [q]_{\sim} \mid q \in Q \} \text{ with } [q]_{\sim} = \{ q' \in Q \mid q \sim q' \}$
- $Q'_0 = \{ [q]_{\sim} \mid q \in Q_0 \}$
- $E' = \{([q]_{\sim}, [q']_{\sim}) \mid (q, q') \in E\}$
- $L'([q]_{\sim}) = L(q)$

A *partition* $\Pi = \{B_1, \ldots, B_k\}$ of Q is a set of nonempty $(B_i \neq \emptyset)$ and pairwise disjoint *blocks* B_i that decompose Q $(Q = \biguplus_{i=1,\ldots,k} B_i)$.

A partition defines an equivalence relation $\sim ((q, q') \in \sim \Leftrightarrow \exists Q_i \in \Pi. q, q' \in B_i)$. Likewise, an equivalence relation \sim defines a partition $\Pi = Q/\sim$.

Blocks, Superblocks, and Stability

A *partition* $\Pi = \{B_1, \ldots, B_k\}$ of Q is a set of nonempty $(B_i \neq \emptyset)$ and pairwise disjoint *blocks* B_i that decompose Q $(Q = \biguplus_{i=1,\ldots,k} B_i)$.

A nonempty union $C = \biguplus_{i \in I} B_i$ of blocks is called a *superblock*.

A block B_i of a partition Π is called *stable* w.r.t. a set B if either $B_i \cap Pre(B) = \emptyset$, or $B_i \subseteq Pre(B)$.

 $(Pre(B) = \{q \in Q \mid Successors(q) \cap B \neq \emptyset\})$

A partition Π is called *stable* w.r.t. a set *B* if all blocks of Π are.

Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks if, and only if, it is the quotient of a bisimulation relation ($\Pi = Q/\sim$).

Sven Schewe

Verification - Lecture 21

8

Partition refinement

For two partitions $\Pi = \{B_1, \ldots, B_k\}$ and $\Pi' = \{B'_1, \ldots, B'_j\}$ of Q, we say that Π is finer than Π' iff every block of Π' is a superblock of Π .

For a given partition $\Pi = \{B_1, \dots, B_k\}$, we call a (super)block *C* of Π a *splitter* of a block B_i / the partition Π if B_i / Π is not stable w.r.t. *C*.

Refine (B_i, C) denotes $\{B_i\}$ if B_i is stable w.r.t. C, and $\{B_i \cap Pre(C), B_i \setminus Pre(C)\}$ if C is a splitter of C.

 $\operatorname{Refine}(\Pi, C) = \biguplus_{i=1,\ldots,k} \operatorname{Refine}(B_i, C).$

Lemma 2. Refine(Π , C) is finer than Π .

Lemma 3. If Π is finer than Π' then Refine (Π, C) is finer than Refine (Π', C) .

Algorithms for bisimulation quotienting

Input: Transition system $S = (Q, Q_0, E, L)$

Output: Bisimulation quotient state graph

1. $\Pi = Q/\sim_{AP}$

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

- 2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser than Q/\sim_S
 - (a) pick a block B that is a splitter of Π
 - (b) $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

Sven Schewe

Verification – Lecture 21

10

Correctness and termination

- 1. $\Pi = Q/\sim_{AP}$
- 2. while some block B ∈ Π is a splitter of Π
 (a) pick a block B that is a splitter of Π
 (b) Π = Refine(Π, B)
- 3. return Π
- Lemma 4. The algorithm terminates.
- Lemma 5. The loop invariant holds initially.

Lemma 6. The loop invariant is preserved.

Theorem 7. The algorithm returns the quotient Q/\sim_S of the coarsest bisimulation \sim_S .

 $(q,q') {\in} {\sim_{AP}} \Leftrightarrow L(q) = L(q')$ loop invariant: Π is coarser than $Q/{\sim_S}$

Complexity

- 1. $\Pi = Q/\sim_{AP}$
- 2. while some block $B \in \Pi$ is a splitter of Π
 - (a) pick a block *B* that is a splitter of Π
 - (b) $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

Lemma 8. Q/\sim_{AP} can be constructed in time $\mathcal{O}(|Q| \cdot |AP|)$.

Proof Idea. Build tree that branches by the atomic propositions. The leafs are labeled with the elements of Q/\sim_{AP} .

The complexity of each refinement step depends on the strategy how ${\cal B}$ is picked.

Sven Schewe

Verification – Lecture 21

12

 $(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

loop invariant: Π is coarser than Q/\sim_S

Refinement complexity

- 2. while some block $B \in \Pi$ is a splitter of Π
 - (a) pick a block B that is a splitter of Π
 - (b) $\Pi = \operatorname{Refine}(\Pi, B)$

Trying all $B \in \Pi$ takes $\mathcal{O}(|E|)$ time.

– There may be $\mathcal{O}(|Q|)$ splits.

Corollary 9. The overall algorithm takes $\mathcal{O}(|Q| \cdot (|AP| + |E|))$ time.

Refinement complexity

- 2. while some block $B \in \Pi$ is a splitter of Π
 - (a) pick a block B that is a splitter of Π
 - (b) $\Pi = \operatorname{Refine}(\Pi, B)$

Trying all $B \in \Pi$ takes $\mathcal{O}(|E|)$ time.

– There may be $\mathcal{O}(|Q|)$ splits.

Corollary 9. The overall algorithm takes $\mathcal{O}(|Q| \cdot (|AP| + |E|))$ time.

- but we can do better -

Sven Schewe

Verification – Lecture 21

An improved algorithm for bisimulation quotienting

Input: Transition system $S = (Q, Q_0, E, L)$

Output: Bisimulation quotient state graph

```
1. \Xi = \{Q\}

2. \Pi = Q/\sim_{AP}

3. while \Xi \neq \Pi

(a) Pick B \in \Xi \smallsetminus \Pi

(b) Pick B' \in \Pi such that B' \subseteq B and |B'| \leq \frac{1}{2}|B|

(c) \Xi = (\Xi \smallsetminus \{B\}) \cup \{B'\} \cup \{B \smallsetminus B'\}

(d) \Pi = \operatorname{Refine}\left(\operatorname{Refine}(\Pi, B'), B \smallsetminus B'\right)
```

4. return ∏

Extra Challenge Question: Prove that the algorithm in the script is wrong. (31.5 Pts)

Termination

1. $\Xi = \{Q\}$ 2. $\Pi = Q/\sim_{AP}$ 3. while $\Xi \neq \Pi$

(a) Pick $B \in \Xi \smallsetminus \Pi$ (b) Pick $B' \in \Pi$ such that $B' \subseteq B$ and $|B'| \leq \frac{1}{2}|B|$

(c) $\Xi = (\Xi \setminus \{B\}) \cup \{B'\} \cup \{B \setminus B'\}$

(d) $\Pi = \operatorname{Refine}\left(\operatorname{Refine}(\Pi, B'), B \smallsetminus B'\right)$

```
4. return \Pi
```

Lemma 10. The loop invariant Ξ is coarser than Π is coarser than Q/\sim_S holds.

Lemma 11. Ξ is strictly refined in every step of the while loop.

Sven Schewe

Verification – Lecture 21

16

Correctness

1. $\Xi = \{Q\}$ 2. $\Pi = Q/\sim_{AP}$ 3. while $\Xi \neq \Pi$ (a) Pick $B \in \Xi \smallsetminus \Pi$ (b) Pick $B' \in \Pi$ such that $B' \subseteq B$ and $|B'| \leq \frac{1}{2}|B|$ (c) $\Xi = (\Xi \smallsetminus \{B\}) \cup \{B'\} \cup \{B \smallsetminus B'\}$ (d) $\Pi = \operatorname{Refine} \left(\operatorname{Refine}(\Pi, B'), B \smallsetminus B'\right)$ until $\Xi = \Pi$ 4. return Π

Lemma 12. If Π is finer than Π' and Π' is stable w.r.t. a set $C \subseteq Q$ than Π is stable w.r.t. C.

Proof Sketch. If $A \in \Pi$ is splitted and $\Pi' \ni A' \supseteq A$ than A' is splitted.

Theorem 13. The algorithm returns the partition Q/\sim_S of the coarsest bisimulation \sim_S .

Proof Idea. Loop invariant: Π is stable w.r.t. every block in Ξ . $\Rightarrow \Pi$ is stable w.r.t. every block in $\Pi = \Xi$