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Bisimulation equivalence

Let Si = (Qi, Q0,i, Ei, Li), i=1, 2, be two state graphs over AP.

A bisimulation for (S1, S2) is a binary relation R ⊆ Q1 × Q2 such that:

1. ∀q1 ∈ Q0,1 ∃q2 ∈ Q0,2. (q1, q2) ∈ R and
∀q2 ∈ Q0,2 ∃q1 ∈ Q0,1. (q1, q2) ∈ R

2. for all states q1 ∈ Q1, q2 ∈ Q2 with (q1, q2) ∈ R it holds:

(a) L1(q1) = L2(q2)

(b) if q′
1 ∈ Successors(q1) then there exists q′

2 ∈ Successors(q2) with (q′
1, q′

2) ∈ R

(c) if q′
2 ∈ Successors(q2) then there exists q′

1 ∈ Successors(q1) with (q′
1, q′

2) ∈ R

S1 and S2 are bisimilar, denoted S1 ∼ S2, if there exists a bisimulation for (S1, S2)
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Coarsest bisimulation

∼S is an equivalence and the coarsest bisimulation for S
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Quotient state graph

For S = (Q, Q0, E, L) and bisimulation ∼S ⊆ S × S on S let

S/∼S = (Q′, Q′
0, E

′, L′) be the quotient of S under ∼S

where

• Q′ = S/∼S = { [q]∼ | q ∈ Q } with [q]∼ = { q′ ∈ Q | q ∼S q′ }

• Q′
0 = { [q]∼ | q ∈ Q0 }

• E′ = {([q]∼, [q′]∼) | (q, q′) ∈ E}

• L′([q]∼) = L(q)

note that S ∼ S/∼S Why?
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Bisimulation vs. CTL ∗ and CTL equivalence

Let S be a finite state graph and s, s′ states in S

The following statements are equivalent:

(1) s ∼S s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧, and ∃©
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The importance of this result

• CTL and CTL∗ equivalence coincide

– despite the fact that CTL∗ is more expressive than CTL

• Bisimilar transition systems preserve the same CTL∗ formulas

– and thus the same LTL formulas (and LT properties)

• Non-bisimilarity can be shown by a single CTL (or CTL∗) formula

– S1 |= Φ and S2 6|= Φ implies S1 6∼ S2

• You even do not need to use an until-operator!

• To check S |= Φ, it suffices to check S/∼|= Φ
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Bisimulation quotient state graph

For S = (Q, Q0, E, L) and bisimulation ∼S ⊆ Q × Q on S let

S/∼S = (Q′, Q′
0, E

′, L′) be the quotient of S under ∼S

where

• Q′ = Q/∼S = { [q]∼ | q ∈ Q } with [q]∼ = { q′ ∈ Q | q ∼S q′ }

• Q′
0 = { [q]∼ | q ∈ Q0 }

• E′ = {([q]∼, [q′]∼) | (q, q′) ∈ E}

• L′([q]∼) = L(q)

note that S ∼ S/∼S
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Quotient state graph / Partitioning
For S = (Q, Q0, E, L) and an equivalence relation ∼⊆ Q × Q on S let

S/∼ = (Q′, Q′
0, E

′, L′) be the quotient of S under ∼, where

• Q′ = Q/∼ = { [q]∼ | q ∈ Q } with [q]∼ = { q′ ∈ Q | q ∼ q′ }

• Q′
0 = { [q]∼ | q ∈ Q0 }

• E′ = {([q]∼, [q′]∼) | (q, q′) ∈ E}

• L′([q]∼) = L(q)

A partition Π = {B1, . . . , Bk} of Q is a set of nonempty (Bi 6= ∅) and
pairwise disjoint blocks Bi that decompose Q (Q =

⊎
i=1,...k Bi).

A partition defines an equivalence relation ∼ ((q, q′)∈ ∼⇔ ∃Qi ∈ Π. q, q′ ∈ Bi).

Likewise, an equivalence relation ∼ defines a partition Π = Q/∼.
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Blocks, Superblocks, and Stability

A partition Π = {B1, . . . , Bk} of Q is a set of nonempty (Bi 6= ∅) and
pairwise disjoint blocks Bi that decompose Q (Q =

⊎
i=1,...,k Bi).

A nonempty union C =
⊎

i∈I Bi of blocks is called a superblock .

A block Bi of a partition Π is called stable w.r.t. a set B if either Bi ∩
Pre(B) = ∅, or Bi ⊆ Pre(B).

(Pre(B) = {q ∈ Q | Successors(q) ∩ B 6= ∅})

A partition Π is called stable w.r.t. a set B if all blocks of Π are.

Lemma 1. A partition Π with consistently labeled blocks is stable with
respect to all of its (super)blocks if, and only if, it is the quotient of a
bisimulation relation (Π = Q/∼).
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Partition refinement

For two partitions Π = {B1, . . . , Bk} and Π′ = {B′
1, . . . , B

′
j} of Q, we say

that Π is finer than Π′ iff every block of Π′ is a superblock of Π.

For a given partition Π = {B1, . . . , Bk}, we call a (super)block C of Π a
splitter of a block Bi / the partition Π if Bi / Π is not stable w.r.t. C.

Refine(Bi, C) denotes {Bi} if Bi is stable w.r.t. C, and {Bi∩Pre(C), Bir

Pre(C)} if C is a splitter of C.

Refine(Π, C) =
⊎

i=1,...,kRefine(Bi, C).

Lemma 2. Refine(Π, C) is finer than Π.

Lemma 3. If Π is finer than Π′ then Refine(Π, C) is finer than Refine(Π′, C).
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Algorithms for bisimulation quotienting

Input: Transition system S = (Q,Q0, E, L)

Output: Bisimulation quotient state graph

1. Π = Q/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than Q/∼S

(a) pick a block B that is a splitter of Π
(b) Π = Refine(Π, B)

3. return Π
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Correctness and termination

1. Π = Q/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than Q/∼S

(a) pick a block B that is a splitter of Π
(b) Π = Refine(Π, B)

3. return Π

Lemma 4. The algorithm terminates.

Lemma 5. The loop invariant holds initially.

Lemma 6. The loop invariant is preserved.

Theorem 7. The algorithm returns the quotient Q/∼S of the coarsest
bisimulation ∼S .
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Complexity

1. Π = Q/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than Q/∼S

(a) pick a block B that is a splitter of Π
(b) Π = Refine(Π, B)

3. return Π

Lemma 8. Q/∼AP can be constructed in time O(|Q| · |AP |).

Proof Idea. Build tree that branches by the atomic propositions. The
leafs are labeled with the elements of Q/∼AP .

The complexity of each refinement step depends on the strategy how B
is picked.
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Refinement complexity

2. while some block B ∈ Π is a splitter of Π

(a) pick a block B that is a splitter of Π

(b) Π = Refine(Π, B)

Trying all B ∈ Π takes O(|E|) time.

– There may be O(|Q|) splits.

Corollary 9. The overall algorithm takes O(|Q| · (|AP | + |E|)) time.
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Refinement complexity

2. while some block B ∈ Π is a splitter of Π

(a) pick a block B that is a splitter of Π

(b) Π = Refine(Π, B)

Trying all B ∈ Π takes O(|E|) time.

– There may be O(|Q|) splits.

Corollary 9. The overall algorithm takes O(|Q| · (|AP | + |E|)) time.

– but we can do better –
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An improved algorithm for bisimulation quotienting

Input: Transition system S = (Q, Q0, E, L)

Output: Bisimulation quotient state graph

1. Ξ = {Q}

2. Π = Q/∼AP

3. while Ξ 6= Π

(a) Pick B ∈ Ξ r Π

(b) Pick B′ ∈ Π such that B′ ⊆ B and |B′| 6
1
2|B|

(c) Ξ = (Ξ r {B}) ∪ {B′} ∪ {B r B′}

(d) Π = Refine
“

Refine(Π, B′), B r B′
”

4. return Π

Extra Challenge Question: Prove that the algorithm in the script is wrong. (31.5 Pts)
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Termination

1. Ξ = {Q}

2. Π = Q/∼AP
3. while Ξ 6= Π

(a) Pick B ∈ Ξ r Π
(b) Pick B′ ∈ Π such that B′ ⊆ B and |B′| 6

1
2|B|

(c) Ξ = (Ξ r {B}) ∪ {B′} ∪ {B r B′}

(d) Π = Refine
„

Refine(Π, B′), B r B′
«

4. return Π

Lemma 10. The loop invariant Ξ is coarser than Π is coarser than
Q/∼S holds.

Lemma 11. Ξ is strictly refined in every step of the while loop.
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Correctness
1. Ξ = {Q}

2. Π = Q/∼AP
3. while Ξ 6= Π

(a) Pick B ∈ Ξ r Π
(b) Pick B′ ∈ Π such that B′ ⊆ B and |B′| 6

1
2|B|

(c) Ξ = (Ξ r {B}) ∪ {B′} ∪ {B r B′}

(d) Π = Refine
„

Refine(Π, B′), B r B′
«

until Ξ = Π

4. return Π

Lemma 12. If Π is finer than Π′ and Π′ is stable w.r.t. a set C ⊆ Q than
Π is stable w.r.t. C.

Proof Sketch. If A ∈ Π is splitted and Π′ ∋ A′ ⊇ A than A′ is splitted.

Theorem 13. The algorithm returns the partition Q/∼S of the coarsest
bisimulation ∼S .

Proof Idea. Loop invariant: Π is stable w.r.t. every block in Ξ.
⇒ Π is stable w.r.t. every block in Π = Ξ
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