Verification

Bernd Finkbeiner, Sven Schewe,
Rayna Dimitrova, Lars Kuhtz,
Anne Proetzsch

Winter Semester 2007/2008

Announcements

@ Deadline for HISPOS registration: 01.12.2007
@ Next Lecture: Thursday, HS 003, 12:15-13:45

@ First Tutorial:
Wednesday 14:15-15:45 Room 015 Building E 1 3

Fridays 10:00-11:30, Room 013 Building E 1 3

Lars Kuhtz Verification - Lecture 2

Setting: Reactive Systems

Recap

@ Ongoing interaction

@ Concurrent and distributed

@ Generalization of sequential systems

@ Computational model: Fair Transition Systems

@ Specification logic: Linear Time Temporal Logic (LTL)

This Lecture

@ Application Language:
Simple Programming Language (SPL)

Lars Kuhtz Verification - Lecture 2

Transition Systems

e[,,-ew
@ Vocabulary: a set of typed variables V
@ Set of all states: =

@ A (finite) set of variables V CV
(data variables + control variables)

@ Initial condition @

@ A (finite) set of transitions 7

Lars Kuhtz Verification - Lecture 2

Transitions

e[,,-ew
Foreachte7: ©Xi— 2%
(each transition is a function from states to sets of states)

@ s' isart-successor of s if s' e1(s)

@ 1t is represented by the transition relation p(t)
(next-state relation)

V' values of variables in the current state

V'’ wvalues of variables in the next state

Lars Kuhtz Verification - Lecture 2

Enabled/Disabled/Taken Transitions Revr,

@ A fransition t
@ is enabled on s if 1(s) = {}
@ is disabled on s if =(s) = {}

@ For an infinite sequence of states
G: Sg, S1, Sa, -
a transition t
@ is enabled at position k if it is enabled on s,

@ is taken at position k if sy, is a t-successor of s,

Lars Kuhtz Verification - Lecture 2

The Interleaving Model

e[,,-ew
Infinite sequence of states

G Sg, Sq, Sz, -
is a run of a transition system, if it satisfies the following:
@ Initiality: s, satisfies 6
@ Consecution: For each i=0,1, ...

there is a transitiont € 7 S.T. Si.i€ T(S;)

Lars Kuhtz Verification - Lecture 2

Idling Transition

e[,,-ew
@ What if no transition is enabled?

@ We implicitly assume that there is an
idling fransition (stuttering transition) t;

p(rr): V=V

@ The idling transition is always enabled.

Lars Kuhtz Verification - Lecture 2

Reachable States Rer,

For a transition system @,
a state s is ®-accessible if there is a run

c. So, 51, 52,
with s=s;, for some i.

A transition system @ is finite-state if the set of all
®-accessible states is finite.

Lars Kuhtz Verification - Lecture 2

Fair Transition Systems Rev,
®=(V,0,7,7,C)

set of just (weakly fair) transitions

QJ
@cC set of compassionate (strongly fair) transitions

c7T:
cCT:

@ Justice: for each just transition it is not the case that
the transition is continually enabled but only taken at
finitely many positions.

@ Compassion: for each compassionate transition it is not
the case that the transition is enabled at infinitely many
positions but only taken at finitely many positions.

Lars Kuhtz Verification - Lecture 2

Computations

An infinite sequence of states

oY SO, Sl, 52,

is a computation of a fair transition system, if it satisfies:

@ Initiality
@ Consecution
@ Justice
@ Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness

Lars Kuhtz Verification - Lecture 2

e Wel{/

LTL

@ Assertion language: FO over interpreted symbols

@ Boolean connectives: v, A, —
@ Modal operators:

<> ¢ Eventually

[J ¢ Henceforth

e Wel{/

¢ U v Until
oWyvy Wait-for o v olU vy
O¢ Next _

Lars Kuhtz Verification - Lecture 2

Abbreviations

e Weh/

@ p=g¢ stands for C(p — a)

(entailment)

Q@ prg stands for O < q)

(congruence)

@ g1 Wae Wagzs Was stands for @ W (2 W (g3 W qa))

(nested waiting-for)

Lars Kuhtz Verification - Lecture 2

Satisfiability / Validity

e Weh/

@ For a temporal formula p
and sequence o,

ckp iff (c0)Ep
@ The formula p is satisfiable if o Ep for some sequence

@ The formula p is valid if ok p for all sequences

Lars Kuhtz Verification - Lecture 2

P-Validity

@ ALTL formula ¢ is valid over a program P,
written P ko,

if ¢ holds in the first state of every computation of P.

Lars Kuhtz

Verification - Lecture 2

e Wel'l/

P-Validity

Lars Kuhtz

set of all models X%

set of models for which
w holds {o|o [E ¢}

P-computations

Verification - Lecture 2

e Wel'l/

P-Validity

e[,,-ew
general program P
Eq PlEq
state state valid P-state valid
formula q .q holds inall |.q holds in all
states" P-accessible
states"
temporal EQ PEo
formula ¢. Valid P-valid
.0 holds in the |.¢ holds in the
first position | first position
of every of every P-
sequence” computation"
Lars Kuhtz Verification - Lecture 2 17
P-Validity
@ For state formulas:
Eq «— E g
P Eqg +— PE g

EFq —

P E q

@ For temporal formulas:

Ey —

Lars Kuhtz

PEY

Verification - Lecture 2

Lars Kuhtz

Specification of Properties

@ Property IT: set of sequences

@ I1is specified by temporal formula ¢

if for every sequence o,
cell

@ Program P has property I1

CEO.

if all computations of P are in I1.

@ If P has property I1, and I1 is specified by o,

then ¢ is P-valid.

Verification - Lecture 2

Lars Kuhtz

Safety versus Liveness

@ "Nothing bad ever happens”

@ All finite prefixes satisfy a
certain requirement (does not
depend on limit behavior)

@ Counter-examples “are finite"

-9
- ... ¢

@ Provable by induction over
reachable states.

@ Can not distinguish runs and
computations

@ Example:
L(e— Ow)

Verification - Lecture 2

"Something good eventually
happens”

Does not depend on finite
prefixes

No finite counter-examples

<0
P ... [

Proof requires assumptions
about hondeterministic choices
(Justice and/or Compasion)

@ Example:

1< (- enabled(t) or taken(T))

20

10

Safety vs. Liveness (Examples)

@oeWy Safety

Q (& (p) Uy Liveness

[+ | (O(p):>([lt|)) Safety

@ request = o grant Liveness

a (0] uw Safety and Liveness

Lars Kuhtz Verification - Lecture 2

21

Simple Programming Language

11

SPL: Simple Programming Language

local yj,y>: boolean where yy =F,yo =F

8

EDZ

Py

Py

Lars Kuhtz

. integer where s=1

loop forever do

£y
i
£3:
£y
is5:

loop forever do
my -
mo -
m3 :
m4 -

ms :

noncritical

(y1, s) == (7, 1)
await (—yo) V(s =2)
critical

Y1 = F

of Reactive Systems
Satetys

noncritical

(?7'2: S) = (T= 2)
await (-y1)V(s=1)
critical

Y2 = F

Verification - Lecture 2 23

SPL Syntax:

Basic Statements

e skip
e assignment
(u11"'1uk) = (611"'1ek)
variables expressions

e await ¢

boolean expression

special case:

halt

= await F

e Communication by message-passing

a < €
1 channel
a = U

(send)

(receive)

e Semaphore operations

request r

(r>0«—r:=r—1)

integer variable

release r

Lars Kuhtz

(r=r4+1)

Verification - Lecture 2 24

12

SPL Syntax: Schematic Statements

e noncritical

may not terminate

e critical

terminates

e produce =

terminates — assign nonzero value to x

¢ consume Yy

terminates

Lars Kuhtz Verification - Lecture 2

25

SPL Syntax: Compound Statements

e Conditional
if ¢ then Sy else S5
if ¢ then S

» Concatenation
S1i -5 Sk

Example: ‘

whencdo S = awaitc, S

e Selection
Sq1 or ---or S

e while
while cdo S

Example:

loop forever do S = whileT do S

Lars Kuhtz Verification - Lecture 2

26

13

SPL Syntax: Compound Statements (cont'd)

e Cooperation Statement

¢ [€1:81; f1: R N R

[£1:S1; £1:] | | [€x: Sis €2 15 €
process

51, ---, S, are parallel to one another

interleaved execution.

entry step: from £ to £1,45... ¢,
exit step: from £1,¢5,...4, to £.

e Block
[local declaration; S]
local wvariable, ..., variable : type where ;
L~
Y1 =¢€1, ---,Yn =€n
Lars Kuhtz Verification - Lecture 2 27

SPL Syntax: Grouped Statements
(s)

executed in a single atomic step
e S can contain only statements that are guar-
anteed to terminate:
— no while statements, no schematic state-

ments

e S can contain no communication state-
ments

(To simplify presentation. More general case in Manna/Pnueli book)

Lars Kuhtz Verification - Lecture 2 28

14

SPL Syntax: Grouped Statements

Lars Kuhtz

Example:
(z:=y+1; z:=2x4+ 1)

=y+1 A Z=2y+3
the same as (z,z) = (y+ 1, 2y + 3)

Example:

(a:=3;a:=5)

—
a' =5

a = 3 is never visible to the outside
world, nor to other processes

Verification - Lecture 2

29

SPL Syntax: Programs

Lars Kuhtz

P [declamtion; [P [€1:57; 2] |-l
Pt [0 Sk B 1]

Pi,..., B, are top-level processes
Variables in P called program variables

Data-precondition:

Declaration

w1 A ... Npn

mode wvartable, ..., wvariable: type where
program variables

l

in (not modified) constraints on
local initial values
out

Verification - Lecture 2

30

15

SPL Syntax: Channel Declaration

e synchronous channels
(no buffering capacity)

mode oy, ap,...,an. channel of type
e asynchronous channels
(unbounded buffering capacity)

mode a1, @3,...,0n. channel [1..] of type
where ¢;

o (; is optional
o ; = ¢ (empty list) by default

Lars Kuhtz Verification - Lecture 2

31

Labels

e Label ¢ identifies statement S

e Equivalence Relation ~ between labels:

— For £: [£1:51;...; €, SE]
£~ 4y

— For £: [£1:S1 or ... or £;:5;]

£ ~vp 8y ~p e o~p

— For £: [local declaration; £1:51]

£ ~p 8y

Lars Kuhtz Verification - Lecture 2

32

16

Locations

[€]

Identify site of control

e Multiple labels identifying different state-
ments may identify the same location.

(6] = {£] & ~p 2}

e [£] is the location corresponding to label £.

Lars Kuhtz Verification - Lecture 2 33
Example
in a, b :integer wherea >0, >0
local). y9: integer where) —w, w2 — b
out g : integer
#): while ¢ £ yo do
e await g1 > ye; £10 gL =y — g2
£ 20 or
fg: awadt yp > w1 57 wa— w2 — YL
f7 gi=m
_{8: d
fog~p [€0] = {¢0, €1} [¢e] = {¢6}
£y~ L3 ~p Ls [62] = {t2,€3,¢5} [t7] = {7}
[£4] = {€a} [£g] = {¢g}
Lars Kuhtz Verification - Lecture 2 34

17

Post Location
¢:S; £ post(S) = [£]
o For [£1:81; 13 11| -+ | [Ski &t]
post(S;) = [&], for every i =1,...,k
o For S=1[01:57;...; € SE]
pOSf(SZ‘) = [Ei-i-l]l for ¢ = 1, 0o G ,k—l
post(Sy) = post(S)
e For S = [{1:51 or ... or £;:5;]
post(S1) = --- = post(S,) = post(S)
e For S = [if ¢ then S; else 53]
post(S1) = post(Sz) = post(S)
e For [£: while ¢ do 5]
post(S') = [4]

Lars Kuhtz Verification - Lecture 2 35
Example
[£: while y; 71 Yo do]
£% await y) > ye; £1°0 y1 = y1 — Y2
fo £ or
£ await yy > g1 fe ws -y — w1
9= w
,'{18 .
post(€1) = [t7] post(£3) = [l4]
post(€2) = post(Ls) post(£3) = [le]
= post(le) = [f]
post(L7) = [g]
Lars Kuhtz Verification - Lecture 2 36

18

Ancestor

S is an ancestor of S’
if S’ is a substatement of S

S is a common ancestor of S and S3
if it is an ancestor of both S; and S»

S is a least common ancestor (LCA) of S; and S>

if S is a common ancestor of S; and S3
and any other common ancestor
is an ancestor of S

LCA is unique for given statements S; and S;

Lars Kuhtz Verification - Lecture 2

37

Parallel Labels

e Statements S and S are parallel if
their LCA is a cooperation statement
that is different from statements S and S

Example: S = [5'1; [S2l153]; 54] Il Ss

Statements LCA

S parallel to S3 Sz || S3

Sp parallel to Sy s

S5 not parallel to S [S1; -+, Sa4
e Ca——

not cooperation

e parallel labels — labels of parallel statements

Lars Kuhtz Verification - Lecture 2

38

19

Conflicting Labels

Conflicting: not equivalent and not parallel

£1:51;
Example: ~ - ~
PP b: (tea: 531 25:] || Lla Sa £a:1): | 1l st Se: Zg]
55285; 552

f3 is parallel to each of {¢4,%4,%¢,%}
and in conflict with each of
{£13f2:€31 35335}

g and Zg are in conflict with each other
but are parallel to each of
{€1,£2,€3,£3, 44,44, 5,5}

Lars Kuhtz Verification - Lecture 2

39

Critical References

Critical reference of a variable in S if:

e writing ref to a variable that has reading
or writing refs in S’ (parallel to S)

e reading reference to a variable that has
writing references in S’ (parallel to S)

e reference to a channel

‘= ... «a = u produce

1 T

Writing references:

— 8

(all other references are reading references)

Lars Kuhtz Verification - Lecture 2

request r

1

release r

1

40

20

Limited Critical References

Statement obeys LCR restriction (LCR-Statement)
if each test (for await, conditional, while)
and entire statement (for assignment)
contains at most one critical reference.

Example:

) _ yre1: await | 90 < we
e = ' u1 J
P to: m:: =1 H Py ey :: I!Jz
gl Y2t Yo+
T =

£330

€>,m1,m3 are LCR-Statements
€1, mo violate the LCR-requirement

LCR Program: only LCR statements

Lars Kuhtz Verification - Lecture 2

41

SPL Semantics

Transition Semantics:

SPL P computation of P

FTS ¢ computation of @

Given an SPL-program P, we can construct

Program counter the corresponding FTS ¢ ={V,©,7,7,C):

For label ¢, e system variables V'
at_0: [l emn Y = {y1,...,yn} — program variables of P
at’ &2 [f e domains: as declared in P

control variable

domain: sets of locations in P
V=Y U{r}

Lars Kuhtz Verification - Lecture 2

42

21

SPL Semantics

¢ Initial Condition @
P {dec; [Pl o [erSy; a1 -)
Pyt [8: Sk &]H
data-precondition ¢
O: 7T={[f]_]}___, [Ek]} A P

e Transitions 7

T:{Tf}u{

transitions associated with
the statements of P

where 7, is the "idling transition”
pp Vi=V

Lars Kuhtz Verification - Lecture 2

43

Some Abbreviations

— pres(U): /\ (v =w) (where U C V)
ucl
the value of u € U are preserved

— move(L,L): LCwm A o =(@—L)UL

where L, L are sets of locations

— move(t, £): move({[f]},{[é]})

Lars Kuhtz Verification - Lecture 2

44

22

Basic Statements

£: 8 Py
¢: skip; ¢ — move(£,€) A pres(Y)
¢ u=¢ [e move(£,0) A W =¢

N pres (Y— {E})

£ await ¢; @ — move(€,£) A ¢ A pres(Y)
2: request r; e move(£,€) A r>0
Arl=r—1

A p'res(Yf{r})

0: release 7, & — move(6,2) A v'=r+1
A p'res(Yf{r})

Lars Kuhtz Verification - Lecture 2

45

Basic Statements (cont'd)

asynchronous send

0 ae=e; 0 — move(£,0) A o/ =aee
A pres(Y—{a})

asynchronous receive

£ oa=u L — move(£,£) A |a| >0

ANa=ued

A pres (Y—{u, a})

synchronous send-receive

L a<e e m: o= u;, m:

move ({E, m}, ¢, ﬁ}) Au'=e A pres(Y—{u})

46

Lars Kuhtz Verification - Lecture 2

SPL Semantics: Schematic Statements

£: noncritical; 72— move(£,) A pres(Y) / Noncritical section
doesn't need to
£: critical; — move(€,£) A pres (Y) ferminate.
= =~ . Modeled by

£: produce ; £: — move(£,£) AN ' £ 0
A pres(Yf{.r}) T ¢J

¢: consume y; {: — move(,£) A pres (Y)

Lars Kuhtz Verification - Lecture 2 47

SPL Semantics: Compound Statements
£: [if c then /1: 51 else BQ:SQ]; & —
Py pg v pg where
pg: move(€,61) A ¢ A pres(Y)
py: move(£,£2) A —c A pres(Y)
l: [whi]e c do [Eg']], &=
pg:pg Vp? where
p;: move(€,€£) A ¢ A pres(Y)

p?: move(£,2) A —c A pres(Y)

e [l Sy Bl oo Nl W S Bl B —
p;:: move({f}, {El,...,fk}) A pres(Y) (entry)

J move({gl,...,@k}, {@}) A pres(Y) (exit)

Lars Kuhtz Verification - Lecture 2 48

24

SPL Semantics: Grouped Statements

e (sy; £ — move(£,£) A §(S)

& data transformation relation:

skip; . pres(Y)
ui=eg; = A pres (Yf{ﬂ})
[S1; S2]; Y7 (§(S)Y,Y") AS(S2) (Y, Y'))

Lars Kuhtz Verification - Lecture 2

49

Justice and Compassion

e Justice Set 7
All transitions except
7; and all transitions associated
with noncritical statements

e Compassion Set C
All transitions associated with
send, receive, request statements

Lars Kuhtz Verification - Lecture 2

50

25

. . . mg, . . mi
Examples o {m: {lg,mo},z:1) — (m:{ég,m1},x:1) —
(W: {EOva}ar:f:L) m (W:{EOaml}ar:*]-) E’
local z: integer where x = 1
[£4: await x = 1]

£o: or mgp: while T do no computation

Lo Py |0 HPQ::{ o
165 skip [my: = —1]

f]_:

I [€5: await x =1 i

Lot or mgq: while T do
2. Py P i

e |4 await x = 1 | P2 { [my: == —a] computation
7@1: |
[fg: if z =1 then]
£1: ski < while
3 P plq(‘l skip | Py mg: while T do no computation
’ o ' ['”‘1: T = —J']
f5: skip
f3i

Lars Kuhtz Verification - Lecture 2

