
1

Verification

Bernd Finkbeiner, Sven Schewe,
Rayna Dimitrova, Lars Kuhtz,

Anne Proetzsch

Winter Semester 2007/2008

2Lars Kuhtz Verification - Lecture 2

Announcements

Deadline for HISPOS registration: 01.12.2007
Next Lecture: Thursday, HS 003, 12:15-13:45

First Tutorial:
Wednesday 14:15-15:45 Room 015 Building E 1 3
Fridays 10:00-11:30, Room 013 Building E 1 3

2

3Lars Kuhtz Verification - Lecture 2

Setting: Reactive Systems

Recap
Ongoing interaction
Concurrent and distributed
Generalization of sequential systems
Computational model: Fair Transition Systems
Specification logic: Linear Time Temporal Logic (LTL)

This Lecture
Application Language:

Simple Programming Language (SPL)

4Lars Kuhtz Verification - Lecture 2

Transition Systems

Vocabulary: a set of typed variables

Set of all states:

A (finite) set of variables
(data variables + control variables)

Initial condition

A (finite) set of transitions

Review

3

5Lars Kuhtz Verification - Lecture 2

Transitions

For each τ ∈ : τ:

(each transition is a function from states to sets of states)

s‘ is a τ-successor of s if s‘ ∈ τ(s)
τ is represented by the transition relation ρ(τ)
(next-state relation)

values of variables in the current state

values of variables in the next state

Review

6Lars Kuhtz Verification - Lecture 2

Enabled/Disabled/Taken Transitions

A transition τ

is enabled on s if τ(s) ≠ {}

is disabled on s if τ(s) = {}

For an infinite sequence of states

σ: s0, s1, s2, …

a transition τ

is enabled at position k if it is enabled on sk

is taken at position k if sk+1 is a τ-successor of sk

Review

4

7Lars Kuhtz Verification - Lecture 2

The Interleaving Model

Infinite sequence of states

σ: s0, s1, s2, …

is a run of a transition system, if it satisfies the following:

Initiality: s0 satisfies

Consecution: For each i= 0,1, …

si+1∈ τ(si) there is a transition τ ∈ s.t.

Review

8Lars Kuhtz Verification - Lecture 2

Idling Transition

What if no transition is enabled?

We implicitly assume that there is an
idling transition (stuttering transition) τI

ρ(τI) : V = V‘

The idling transition is always enabled.

Review

5

9Lars Kuhtz Verification - Lecture 2

Reachable States

For a transition system Φ,
a state s is Φ-accessible if there is a run

σ: s0, s1, s2, …
with s=si, for some i.

A transition system Φ is finite-state if the set of all
Φ-accessible states is finite.

Review

10Lars Kuhtz Verification - Lecture 2

Fair Transition Systems

set of just (weakly fair) transitions
set of compassionate (strongly fair) transitions

Justice: for each just transition it is not the case that
the transition is continually enabled but only taken at
finitely many positions.
Compassion: for each compassionate transition it is not
the case that the transition is enabled at infinitely many
positions but only taken at finitely many positions.

Review

6

11Lars Kuhtz Verification - Lecture 2

Computations

An infinite sequence of states

σ: s0, s1, s2, …

is a computation of a fair transition system, if it satisfies:

Initiality
Consecution
Justice
Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness

Review

12Lars Kuhtz Verification - Lecture 2

LTL

ϕϕϕ ϕϕϕϕHenceforth

ϕ

ϕϕ ψϕϕ

ϕ

ϕ Eventually

ϕ

ψϕ Until

Wait-forϕ ψ ∨ ψϕϕ

Nextϕ

Assertion language: FO over interpreted symbols
Boolean connectives: ∨, ∧, ¬
Modal operators:

Review

7

13Lars Kuhtz Verification - Lecture 2

Abbreviations

stands for

(entailment)

stands for

(congruence)

stands for

(nested waiting-for)

Review

14Lars Kuhtz Verification - Lecture 2

Satisfiability / Validity

For a temporal formula p
and sequence σ,

σ p iff (σ,0) p

The formula p is satisfiable if σ p for some sequence σ

The formula p is valid if σ p for all sequences σ

Review

8

15Lars Kuhtz Verification - Lecture 2

P-Validity

A LTL formula ϕ is valid over a program P,
written P ϕ,

if ϕ holds in the first state of every computation of P.

Review

16Lars Kuhtz Verification - Lecture 2

P-Validity Review

9

17Lars Kuhtz Verification - Lecture 2

P-Validity

P ϕ
P-valid
„ϕ holds in the
first position
of every P-
computation“

ϕ
Valid
„ϕ holds in the
first position
of every
sequence“

temporal
formula ϕ.

P q
P-state valid
„q holds in all
P-accessible
states“

q
state valid
„q holds in all
states“

state
formula q

program Pgeneral

Review

18Lars Kuhtz Verification - Lecture 2

P-Validity

For state formulas:

For temporal formulas:

10

19Lars Kuhtz Verification - Lecture 2

Specification of Properties

Property Π: set of sequences

Π is specified by temporal formula ϕ
if for every sequence σ,

σ∈ Π iff σ ϕ.

Program P has property Π
if all computations of P are in Π.

If P has property Π, and Π is specified by ϕ,
then ϕ is P-valid.

20Lars Kuhtz Verification - Lecture 2

Safety versus Liveness

“Nothing bad ever happens”
All finite prefixes satisfy a
certain requirement (does not
depend on limit behavior)
Counter-examples “are finite”

Provable by induction over
reachable states.
Can not distinguish runs and
computations
Example:

(φ → ψ)

“Something good eventually
happens”
Does not depend on finite
prefixes
No finite counter-examples

Proof requires assumptions
about nondeterministic choices
(Justice and/or Compasion)
Example:

(¬ enabled(τ) or taken(τ))

¬φ ... φ
¬φ

¬φ ... φ

φ

11

21Lars Kuhtz Verification - Lecture 2

Safety vs. Liveness (Examples)

φ ψ

(φ) ψ

(φ) ⇒ (ψ)

request ⇒ grant

φ ψ

Safety

Liveness

Safety

Liveness

Safety and Liveness

Simple Programming Language

12

23Lars Kuhtz Verification - Lecture 2

SPL: Simple Programming Language

24Lars Kuhtz Verification - Lecture 2

SPL Syntax: Basic Statements

13

25Lars Kuhtz Verification - Lecture 2

SPL Syntax: Schematic Statements

26Lars Kuhtz Verification - Lecture 2

SPL Syntax: Compound Statements

14

27Lars Kuhtz Verification - Lecture 2

SPL Syntax: Compound Statements (cont‘d)

28Lars Kuhtz Verification - Lecture 2

SPL Syntax: Grouped Statements

(To simplify presentation. More general case in Manna/Pnueli book)

15

29Lars Kuhtz Verification - Lecture 2

SPL Syntax: Grouped Statements

30Lars Kuhtz Verification - Lecture 2

SPL Syntax: Programs

Data-precondition:

16

31Lars Kuhtz Verification - Lecture 2

SPL Syntax: Channel Declaration

ε

32Lars Kuhtz Verification - Lecture 2

Labels

17

33Lars Kuhtz Verification - Lecture 2

Locations

34Lars Kuhtz Verification - Lecture 2

Example

18

35Lars Kuhtz Verification - Lecture 2

Post Location

36Lars Kuhtz Verification - Lecture 2

Example

19

37Lars Kuhtz Verification - Lecture 2

Ancestor

38Lars Kuhtz Verification - Lecture 2

Parallel Labels

20

39Lars Kuhtz Verification - Lecture 2

Conflicting Labels

Conflicting: not equivalent and not parallel

Example:

40Lars Kuhtz Verification - Lecture 2

Critical References

Writing references:

(all other references are reading references)

Critical reference

21

41Lars Kuhtz Verification - Lecture 2

Limited Critical References

Example:

LCR Program: only LCR statements

42Lars Kuhtz Verification - Lecture 2

SPL Semantics

Program counter

Transition Semantics:

22

43Lars Kuhtz Verification - Lecture 2

SPL Semantics

44Lars Kuhtz Verification - Lecture 2

Some Abbreviations

23

45Lars Kuhtz Verification - Lecture 2

Basic Statements

46Lars Kuhtz Verification - Lecture 2

Basic Statements (cont‘d)

24

47Lars Kuhtz Verification - Lecture 2

SPL Semantics: Schematic Statements

Noncritical section
doesn‘t need to
terminate.

Modeled by

48Lars Kuhtz Verification - Lecture 2

SPL Semantics: Compound Statements

25

49Lars Kuhtz Verification - Lecture 2

SPL Semantics: Grouped Statements

δ()

δ: data transformation relation:

…

50Lars Kuhtz Verification - Lecture 2

Justice and Compassion

26

51Lars Kuhtz Verification - Lecture 2

Examples

1.

2.

3.

no computation

computation

no computation

