

Verification

Bernd Finkbeiner, Sven Schewe, Rayna Dimitrova, Lars Kuhtz, Anne Proetzsch

Winter Semester 2007/2008

Computations	Review
An infinite sequence of states	
σ: s ₀ , s ₁ , s ₂ ,	
is a computation of a fair transition system, if it sat	isfies:
 Initiality Consecution Justice Compassion 	
Fairness = Justice + Compassion Computation = Run + Fairness	
Lars Kuhtz Verification - Lecture 2	11

P-Vo	alidity			Review
		general	program P	
	state formula q	⊫q state valid "q holds in all states"	P⊫q P-state valid "q holds in all P-accessible states"	
	temporal formula φ.	⊧φ Valid "φ holds in the first position of every sequence"	P⊧φ P-valid "φ holds in the first position of every P- computation"	
Lars Kuhtz		Verification - Lecture 2		17

Labels	
ℓ : S	
• Label ℓ identifies statement S	
• Equivalence Relation \sim_L between label	ls:
- For ℓ : $[\ell_1: S_1; \ldots; \ell_k: S_k]$ $\ell \sim_L \ell_1$	
- For ℓ : $[\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$ $\ell \sim_L \ell_1 \sim_L \dots \sim_L \ell_k$	
- For ℓ : [local declaration; $\ell_1: S_1$] $\ell \sim_L \ell_1$	
Lars Kuhtz Verification - Lecture 2	32

E	Basic Statements	
	$\underline{\ell:S}$ $\underline{\rho_{\ell}}$	2
	ℓ : skip; $\hat{\ell}$: \rightarrow move $(\ell, \hat{\ell}) \land pres(Y)$	
	$\ell: \ \overline{u} := \overline{e}; \ \widehat{\ell}: \longrightarrow move(\ell, \widehat{\ell}) \land \overline{u}' = \overline{e} \land pres(Y - \{\overline{u}\})$	ī
	ℓ : await c; $\hat{\ell}$: \rightarrow move $(\ell, \hat{\ell}) \land c \land pres(Y)$	
	ℓ : request r ; $\hat{\ell}$: \rightarrow $move(\ell, \hat{\ell}) \land r > 0$ $\land r' = r - 1$ $\land pres(Y - \{r\})$	
	ℓ : release r ; $\hat{\ell}$: \rightarrow move $(\ell, \hat{\ell}) \land r' = r + 1$ $\land pres(Y - \{r\})$	
Lars k	uhtz Verification - Lecture 2	4

asynchronous send
$\begin{array}{cccc} \ell \colon \ \alpha \Leftarrow e ; \ \widehat{\ell} \colon & \to & move(\ell, \widehat{\ell}) \ \land \ \alpha' = \alpha \bullet e \\ & \land \ pres \Big(Y - \{ \alpha \} \Big) \end{array}$
asynchronous receive
$\ell: \ lpha \Rightarrow u; \ \widehat{\ell}: \qquad o \qquad move(\ell, \widehat{\ell}) \ \land \ lpha > 0 \ \land \ lpha = u' ullet lpha' \ \land presig(Y - \{u, lpha\}ig)$
synchronous send-receive
$\ell: \ lpha \leftarrow e; \ \widehat{\ell}: \qquad m: \ lpha \Rightarrow u; \ \widehat{m}:$
$\mathit{move}ig(\{\ell,m\},\{\widehat{\ell},\widehat{m}\}ig) \ \land \ u' = e \ \land \ \mathit{pres}ig(Y{-}\{u\}ig)$

SPL Semantics: Compound Statements $\begin{aligned} \iota: \left[\text{if } c \text{ then } \ell_1 : S_1 \text{ else } \ell_2 : S_2 \right]; \ \hat{\ell}: \rightarrow \\ \rho_{\ell} : \rho_{\ell}^T \lor \rho_{\ell}^F \text{ where} \\ \rho_{\ell}^T: \ move(\ell, \ell_1) \land c \land pres(Y) \\ \rho_{\ell}^T: \ move(\ell, \ell_2) \land \neg c \land pres(Y) \\ \ell: \left[\text{while } c \text{ do } \left[\tilde{\ell}: \tilde{S} \right] \right]; \ \hat{\ell}: \rightarrow \\ \rho_{\ell} : \rho_{\ell}^T \lor \rho_{\ell}^F \text{ where} \\ \rho_{\ell}^T: \ move(\ell, \tilde{\ell}) \land c \land pres(Y) \\ \rho_{\ell}^T: \ move(\ell, \tilde{\ell}) \land c \land pres(Y) \\ \ell: \left[\left[\ell_1 : S_1; \ \hat{\ell}_1 : \right] \parallel \cdots \parallel \left[\ell_k : S_k; \ \hat{\ell}_k : \right] \right]; \ \hat{\ell}: \rightarrow \\ \rho_{\ell}^E: \ move(\{\ell\}, \ \{\ell_1, \dots, \ell_k\}) \land pres(Y) \text{ (entry)} \\ \rho_{\ell}^X: \ move(\{\hat{\ell}_1, \dots, \hat{\ell}_k\}, \ \{\hat{\ell}\}) \land pres(Y) \text{ (exit)} \end{aligned}$

Examples $\begin{aligned}
\varepsilon: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \\
\langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \dots \\
\text{Iscal } x: \text{ integer where } x = 1 \\
1. \quad P_1:: \begin{bmatrix} \ell_0: \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ 0 \\ \ell_0^a: \text{ skip} \end{bmatrix} \end{bmatrix} \parallel P_2:: \begin{bmatrix} m_0: \text{ while } T \text{ do} \\ [m_1: x: = -x] \end{bmatrix} \quad \text{no computation} \\
2. \quad P_1:: \begin{bmatrix} \ell_0: \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ 0 \\ \ell_0^a: \text{ await } x \neq 1 \end{bmatrix} \parallel P_2:: \begin{bmatrix} m_0: \text{ while } T \text{ do} \\ [m_1: x: = -x] \end{bmatrix} \quad \text{computation} \\
3. \quad P_1:: \begin{bmatrix} \ell_0: if x = 1 \text{ then} \\ \ell_1: \text{ skip} \\ \text{else} \\ \ell_2: \text{ skip} \end{bmatrix} \parallel P_2:: \begin{bmatrix} m_0: \text{ while } T \text{ do} \\ [m_1: x: = -x] \end{bmatrix} \quad \text{no computation} \end{aligned}$