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Announcements

Deadline for HISPOS registration: 01.12.2007
Next Lecture: Thursday, HS 003, 12:15-13:45

First Tutorial:  
Wednesday 14:15-15:45 Room 015 Building E 1 3 
Fridays 10:00-11:30, Room 013 Building E 1 3 
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Setting: Reactive Systems

Recap
Ongoing interaction
Concurrent and distributed
Generalization of sequential systems
Computational model: Fair Transition Systems
Specification logic: Linear Time Temporal Logic (LTL)

This Lecture
Application Language: 

Simple Programming Language (SPL)
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Transition Systems

Vocabulary: a set of typed variables

Set of all states:

A (finite) set of variables 
(data variables + control variables)

Initial condition

A (finite) set of transitions 

Review
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Transitions

For each τ ∈ :    τ:

(each transition is a function from states to sets of states)

s‘ is a τ-successor of s  if  s‘ ∈ τ(s)
τ is represented by the transition relation ρ(τ)
(next-state relation)

values of variables in the current state

values of variables in the next state

Review
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Enabled/Disabled/Taken Transitions

A transition τ

is enabled on s  if τ(s) ≠ {}

is disabled on s if τ(s) = {}

For an infinite sequence of states

σ: s0, s1, s2, …

a transition τ

is enabled at position k if it is enabled on sk

is taken at position k if sk+1 is a τ-successor of sk

Review
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The Interleaving Model

Infinite sequence of states

σ: s0, s1, s2, …

is a run of a transition system, if it satisfies the following: 

Initiality: s0 satisfies 

Consecution: For each i= 0,1, …

si+1∈ τ(si) there is a transition τ ∈ s.t.     

Review
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Idling Transition

What if no transition is enabled?

We implicitly assume that there is an 
idling transition (stuttering transition) τI

ρ(τI) : V = V‘

The idling transition is always enabled.

Review
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Reachable States

For a transition system Φ,
a state s is Φ-accessible if there is a run 

σ: s0, s1, s2, …
with s=si, for some i. 

A transition system Φ is finite-state if the set of all 
Φ-accessible states is finite.

Review
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Fair Transition Systems

set of just (weakly fair) transitions
set of compassionate (strongly fair) transitions

Justice: for each just transition it is not the case that 
the transition is continually enabled but only taken at 
finitely many positions.
Compassion: for each compassionate transition it is not 
the case that the transition is enabled at infinitely many 
positions but only taken at finitely many positions.

Review
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Computations

An infinite sequence of states

σ: s0, s1, s2, …

is a computation of a fair transition system, if it satisfies:

Initiality
Consecution
Justice 
Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness 

Review
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LTL

ϕϕϕ ϕϕϕϕHenceforth

ϕ

ϕϕ ψϕϕ

ϕ

ϕ Eventually

ϕ

ψϕ Until

Wait-forϕ ψ ∨ ψϕϕ

Nextϕ

Assertion language: FO over interpreted symbols
Boolean connectives: ∨, ∧, ¬
Modal operators:

Review
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Abbreviations

stands for                      

(entailment)

stands for                      

(congruence)

stands for

(nested waiting-for) 

Review
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Satisfiability / Validity

For a temporal formula p  
and sequence σ,

σ p    iff (σ,0)   p

The formula p is satisfiable if σ p for some sequence σ

The formula p is valid if σ p for all sequences σ

Review
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P-Validity

A LTL formula ϕ is valid over a program P,
written P   ϕ,

if ϕ holds in the first state of every computation of P.

Review
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P-Validity Review
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P-Validity

P ϕ
P-valid
„ϕ holds in the
first position
of every P-
computation“

ϕ
Valid
„ϕ holds in the
first position
of every
sequence“

temporal 
formula ϕ.

P    q
P-state valid
„q holds in all 
P-accessible
states“

q
state valid
„q holds in all 
states“

state
formula q

program Pgeneral

Review
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P-Validity

For state formulas:

For temporal formulas:
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Specification of Properties

Property Π: set of sequences

Π is specified by temporal formula ϕ
if for every sequence σ,  

σ∈ Π iff σ ϕ.

Program P has property Π
if all computations of P are in Π.

If P has property Π, and Π is specified by ϕ,
then ϕ is P-valid.
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Safety versus Liveness

“Nothing bad ever happens”
All finite prefixes satisfy a 
certain requirement (does not 
depend on limit behavior)
Counter-examples “are finite”

Provable by induction over 
reachable states.
Can not distinguish runs and 
computations
Example:

(φ → ψ)

“Something good eventually 
happens”
Does not depend on finite 
prefixes
No finite counter-examples

Proof requires assumptions 
about nondeterministic choices 
(Justice and/or Compasion)
Example:

(¬ enabled(τ) or taken(τ))

¬φ ... φ
¬φ

¬φ ... φ

φ
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Safety vs. Liveness (Examples)

φ ψ

(    φ)    ψ

(    φ) ⇒ ( ψ)

request ⇒ grant

φ ψ

Safety

Liveness

Safety

Liveness

Safety and Liveness

Simple Programming Language
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SPL: Simple Programming Language
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SPL Syntax: Basic Statements
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SPL Syntax: Schematic Statements
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SPL Syntax: Compound Statements
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SPL Syntax: Compound Statements (cont‘d)
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SPL Syntax: Grouped Statements

(To simplify presentation. More general case in Manna/Pnueli book)



15

29Lars Kuhtz Verification - Lecture 2

SPL Syntax: Grouped Statements
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SPL Syntax: Programs

Data-precondition:
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SPL Syntax: Channel Declaration

ε
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Labels
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Locations
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Example
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Post Location
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Example
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Ancestor
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Parallel Labels
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Conflicting Labels

Conflicting: not equivalent and not parallel

Example:
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Critical References

Writing references:

(all other references are reading references)

Critical reference
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Limited Critical References

Example:

LCR Program: only LCR statements
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SPL Semantics

Program counter

Transition Semantics:
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SPL Semantics
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Some Abbreviations
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Basic Statements
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Basic Statements (cont‘d)
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SPL Semantics: Schematic Statements

Noncritical section
doesn‘t need to 
terminate.

Modeled by
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SPL Semantics: Compound Statements
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SPL Semantics: Grouped Statements

δ(   )

δ: data transformation relation:

…
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Justice and Compassion
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Examples

1.

2.

3.

no computation

computation

no computation


