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You‘ve come to the right place.

Core Lecture (Stammvorlesung) 

9 LP

Lecture: 
Tuesdays and Thursdays 14:15-15:45 
Building E 1 3, HS 002

Tutorial A: Room 015 Bldg E 1 3, Wednesdays 14:00-16:00 
Tutorial B:  Room 013 Bldg E 1 3, Fridays 10:00-12:00
starting next week

Web page
react.cs.uni-sb.de/courses/verification
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The Team.
o Bernd Finkbeiner

E 1 3/506
finkbeiner@cs.uni-sb.de

o Rayna Dimitrova
E 1 3/507
dimitrova@cs.uni-sb.de

o Lars Kuhtz
E 1 3/532 
kuhtz@cs.uni-sb.de

o Anne Proetzsch
E 1 3/532 
proetzsch@cs.uni-sb.de

o Sven Schewe
E 1 3/508
schewe@cs.uni-sb.de
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This course is about…

Computer-Aided Verification

1. Verification: 
find errors, or
prove that the system is correct.

2. Computer-Aided:
completely automatic, or
computer checks proof and helps
with low-level details.
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Context

Verification

Semantics

Concurrent
programming

Logic

Automata theory

Theory

Specification logics, Model 
checking algorithms, proof
systems

Tools

SPIN, STeP, SMV, 
PVS, UPPAAL, 
KRONOS, ACL2, 
Murϕ, VIS, …

Applications

Protocols, distributed
algorithms, medical
equipment, power
plants, …
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Badmouth

Verification can only be done by mathematicians.

The verification process is itself prone to errors, 
so why bother?

Using formal methods will slow down the project.
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Some answers...

Verification can only be done by mathematicians.

Verification is based on mathematics
but the user often does not need to know the math.

The verification process is itself prone to errors, 
so why bother?

Ultimately we reduce errors, we don‘t claim to eliminate them.

Using formal methods will slow down the project.

It may speed it up, if errors are found earlier.
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Verification Techniques

Deductive Verification:
Using some logical formalism, prove formally that the software 
satisfies its specification.

Model Checking:
Use some software to automatically check that the software 
satisfies its specification.

Testing:
Check computations of the software according to some coverage 
scheme. (Testing can only show the presence of errors, never the
absence of errors. We won‘t focus on testing in this course.)
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1960’s      70’s        80’s        90’s        00’s

Temporal Logic

Model  checking
Deductive verification

CombinationsChronology:

Flow Charts 
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_
+

Deductive Verification Model Checking

Combination

Infinite-state Finite-state

Only proofs Counterexamples

Interactive Automatic

_

_
+

+

+
+
+_

(undecidable in general)
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Popular exaggerations

Model checking automatically finds errors.

Deductive verification can show that the 
software is completely safe.
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Deductive Verification
a proof system for linear-time temporal logic
Model Checking
linear and branching-time model checking
automata over infinite objects
Abstraction
combining deductive verification and model checking
Advanced Topics 
real-time/hybrid systems, game logics, …

Course Outline
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Course formalities…
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Homework Problems

One problem set per week
Mostly paper & pencil exercises, some exercises with tools

Problem sets will be published on the web site on Tuesdays
(first one today)
Problem sets are due on Tuesday the following week before the lecture
Will be discussed on Wednesday / Thursday

We will try to return the problem sets as soon as possible
Help us by submitting early ☺

>50% points in Homework Problems -> Admission to final exam
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Exam Policy

Midterm Exam: 20.12.2007  
Final Exam: 22.02.2008 
Backup Exam: 04.04.2008

Requirement for admission to final exam: more than
50% points in homeworks
Requirement for admission to backup exam: passing
grade in either midterm or final (but not both)  
You pass the course if you pass two exams
Your final grade is the average of the two passing grades
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Software Reliability Methods 

by Doron A. Peled
Springer Verlag; ISBN: 0387951067 

Literature Recommendations
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Temporal Verification of Reactive
Systems – Safety

by Zohar Manna and Amir Pnueli

Springer Verlag; ISBN: 0387944591 

Literature Recommendations
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Model Checking

by Edmund M. Clarke, Jr.,  
Orna Grumberg and Doron A. Peled

MIT Press; ISBN: 0262032708 

Literature Recommendations
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Principles of Model Checking

by Christel Baier and 
Joost-Pieter Katoen

To appear in Spring 2008

(we’ll distribute selected chapters in 
class.) 

Literature Recommendations

Deductive Verification

Robert Floyd Tony Hoare Amir Pnueli Zohar Manna

A first example

Peterson‘s Mutual Exclusion Algorithm
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Version 1
Protection variables

P1 is interested

P1 waits

P1 resets y1
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Problem: deadlock possible

1
2

3
4

May reach l3, m3 with

y1 = y2 = T

24Bernd Finkbeiner                                             Verification - Lecture 1

Version 2 
Signature variable

P1 requests priority

P1 has priority
(P2 was the last 

to request priority)
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Properties of Version 2

Mutual exclusion:

P1 and P2 are never simultaneously
in their critical sections

1-Bounded Overtaking:

P2 can visit its critical section at most once
before P1 gets to visit its critical section
(if P1 is waiting).

Accessibility:

If P1 leaves the noncritical section it will eventually enter the
critical section.
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Version 2 

Simultaneous assignment
may not be available.

Version 3: split
assignment
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Version 3
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Problem: Violation of Mutual Exclusion

1
2

3
4

May reach l5, m5

7

5
6

8
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Version 4

Swap comands

Correct?

Modeling Software Systems
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Types of Systems

Sequential systems.

Reactive systems.

Distributed systems.
Concurrent systems.
Embedded systems (software + hardware).

We‘ll focus on reactive systems
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Observable only at the beginning and 
end of their execution

with no interaction with the environment.

Sequential systems typically terminate.

Specified by input-output relations
→ First-Order Logic.

Sequential Systems

input system output
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Reactive Systems

Observable throughout their execution

Reactive Systems typically don‘t terminate.

Interaction with environment specified by the ongoing
behavior (interaction history)
→ automata, temporal logic

system
↑↓ ↑↓ ↑↓ ↑↓ ↑↓

↑↓ ↑↓ ↑↓ ↑↓ ↑↓

time
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Vocabulary
a set of typed variables

Expressions over x+y

Assertions over x>y 

A state is an interpretation over 

Example:       
= {x,y}

s = <x:1, y:2>   
(also written as s[x]=1, s[y]=2)
x>y is false on s

Set of all states: 

States
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Transition Systems

A (finite) set of variables 
System variables: data variables + control variables

Initial condition 
first-order assertion over
that characterizes all initial states

A (finite) set of transitions 
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Transitions

For each τ ∈ :    τ:

(each transition is a function from states to sets of states)

s‘ is a τ-successor of s  if s‘ ∈ τ(s)
τ is represented by the transition relation ρ(τ)
(next-state relation)

values of variables in the current state

values of variables in the next state
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Enabled/Disabled/Taken Transitions

A transition τ

is enabled on s  if τ(s) ≠ {}

is disabled on s if τ(s) = {}

For an infinite sequence of states

σ: s0, s1, s2, …

a transition τ

is enabled at position k if it is enabled on sk

is taken at position k if sk+1 is a τ-successor of sk
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The Interleaving Model

Infinite sequence of states

σ: s0, s1, s2, …

is a run of a transition system, if it satisfies the following: 

Initiality: s0 satisfies

Consecution: For each i= 0,1, …

si+1∈ τ(si) there is a transition τ ∈ s.t.     
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Example

s0=<a=2, b=1, c=2, d=1, e=0> 
(satisfies the initial condition)
(first transition taken)
s1=<a=2, b=1, c=1, d=1, e=1>
(second transition taken)
s2=<a=2, b=1, c=1, d=0, e=2>
(first transition taken again)
s3=<a=2, b=1 ,c=0, d=0, e=3>

: {a, b, c, d, e: integer}
: c=a ∧ d=b ∧ e=0
: {τ1, τ2}

ρ(τ1) : c>0 ∧ c’=c-1 ∧ e’= e+1
ρ(τ2) : d>0 ∧ d’=d-1 ∧ e’= e+1
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Idling Transition

What if no transition is enabled?

We implicitly assume that there is an 
idling transition (stuttering transition) τI

ρ(τI) : V = V‘

The idling transition is always enabled.
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Reachable States

For a transition system Φ,
a state s is Φ-accessible if there is a run

σ: s0, s1, s2, …
with s=si, for some i. 

A transition system Φ is finite-state if the set of all 
Φ-accessible states is finite.
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Atomic Transitions

Each atomic transition represents a small piece of code 
such that no smaller piece of code is observable.
Is a:=a+1 atomic?
In some systems, e.g., when a is a register and the 
transition is executed using an inc command.
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Non-atomicity

Execute the following when 
a=0 in two concurrent 
processes:

P1:a=a+1
P2:a=a+1

Result: a=2.
Is this always the case?

Consider the actual 
translation:

P1:load R1,a
inc R1
store R1,a

P2:load R2,a
inc R2
store R2,a

a may also be 1.
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The Scheduler

Start from some initial state s0 such that s0 satisfies .
Set s = s0.

Loop forever:
Pick a transition τ that is currently enabled at s.
Select a new state state s‘ in τ(s).
Set s=s‘.

Nondeterministic choice.

Fairness?
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Fair Transition Systems

set of just (weakly fair) transitions
set of compassionate (strongly fair) transitions

Justice: for each just transition it is not the case that
the transition is continually enabled but only taken at 
finitely many positions.
Compassion: for each compassionate transition it is not
the case that the transition is enabled at infinitely many
positions but only taken at finitely many positions.
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Example

s0=<x=0, y=0> 
(satisfies the initial condition)
s1=<x=1, y=0>
(τx taken)
s2=<x=0, y=0>
(τx taken)
s3=<x=1, y=0>
(τx taken)
…

: {x,y: integer}
: x=0 ∧ y=0
: {τI, τx, τy}
: {τx}
: {τy}

ρ(τx) : x’ = x+1 mod 2
ρ(τy) : x=1 ∧ y‘ = y+1

Justice: YES

Compassion: NO  (τy is infinitely often enabled but never taken.)
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Computations

An infinite sequence of states

σ: s0, s1, s2, …

is a computation of a fair transition system, if it satisfies:

Initiality
Consecution
Justice
Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness 

Specifying Properties in
Linear Time Temporal Logic
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Temporal Logic

Two views:

Linear Time Temporal Logic: LTL
Program generates infinite sequences of states
Models of LTL formulas are infinite sequences of states

Computation Tree Logic
Program generates an infinite tree, 
where branching points represent nondeterminism
in the program
Models of CTL formulas are infinite trees.

We‘ll continue with LTL and return to CTL later in the course.

50Bernd Finkbeiner                                             Verification - Lecture 1

LTL

LTL is defined relative to an underlying assertion
language, in which conditions over individual states are
formulated.

For example: propositional logic, first-order logic.
In this part of the course, we use a first-order language
over interpreted symbols (functions and relations over
concrete domains).

Example: x>5

Formulas of this language are called
state formulas or assertions.
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Temporal Operators

ϕϕϕ ϕϕϕϕHenceforth

ϕ

ϕϕ ψϕϕ

ϕ

ϕ Eventually

ϕ

ψϕ Until

Wait-forϕ ψ ∨ ψϕϕ

Nextϕ
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LTL Syntax

Every assertion is a temporal formula.

If ϕ and ψ are temporal formulas, then so are

ϕ ϕ ψϕ ϕ ψ

¬ ϕ ϕ ∨ ψ       ϕ ∧ ψ

ϕ

53Bernd Finkbeiner                                             Verification - Lecture 1

LTL formulas are evaluated over an infinite sequence of 
states

σ: s0, s1, s2, …

The semantics of an LTL formula ϕ is defined inductively
at position j≥0

(σ,j)    ϕ

LTL Semantics
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LTL Semantics

For state formulas:

For temporal formulas:

p evaluated locally using
the interpretation of sj
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LTL Semantics

x

x

x

x

x
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Examples

if initially p then eventually q    

every p is eventually followed by a q

infinitely many q 
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Examples

finitely many ¬q

if there are infinitely many p 
then there are infinitely many q

q precedes p
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Abbreviations

stands for

(entailment)

stands for

(congruence)

stands for

(nested waiting-for) 
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Peterson‘s Algorithm
Mutual exclusion:

1-Bounded Overtaking:

Accessibility:

Communal Accessibility:

∨
∨
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Satisfiability / Validity

For a temporal formula p  
and sequence σ,

σ p    iff (σ,0)   p

The formula p is satisfiable if σ p for some sequence σ

The formula p is valid if σ p for all sequences σ
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Examples

x<5

is satisfiable

x<5    ∨ x≥5

is valid

x<5    ∧ x≥5

is unsatisfiable
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Congruences
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Expressiveness

There are properties (i.e., sets of sequences) that cannot be
expressed as LTL formulas.

Example: „x=0 is true only at even positions“
cannot be expressed.

Note:  „x=0 is true exactly at the even positions“
can be expressed!

x=0 ∧ ((x=0) ↔ (x≠0))

LTL & Programs
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P-Validity

A LTL formula ϕ is valid over a program P,
written P   ϕ,

if ϕ holds in the first state of every computation of P.
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P-Validity
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P-Validity

P ϕ
P-valid
„ϕ holds in the
first position
of every P-
computation“

ϕ
Valid
„ϕ holds in the
first position
of every
sequence“

temporal 
formula ϕ.

P    q
P-state valid
„q holds in all 
P-accessible
states“

q
state valid
„q holds in all 
states“

state
formula q

program Pgeneral


