
1

Verification

Bernd Finkbeiner, Sven Schewe,
Rayna Dimitrova, Lars Kuhtz,

Anne Proetzsch

Winter Semester 2007/2008

2Bernd Finkbeiner Verification - Lecture 1

You‘ve come to the right place.

Core Lecture (Stammvorlesung)

9 LP

Lecture:
Tuesdays and Thursdays 14:15-15:45
Building E 1 3, HS 002

Tutorial A: Room 015 Bldg E 1 3, Wednesdays 14:00-16:00
Tutorial B: Room 013 Bldg E 1 3, Fridays 10:00-12:00
starting next week

Web page
react.cs.uni-sb.de/courses/verification

3Bernd Finkbeiner Verification - Lecture 1

The Team.
o Bernd Finkbeiner

E 1 3/506
finkbeiner@cs.uni-sb.de

o Rayna Dimitrova
E 1 3/507
dimitrova@cs.uni-sb.de

o Lars Kuhtz
E 1 3/532
kuhtz@cs.uni-sb.de

o Anne Proetzsch
E 1 3/532
proetzsch@cs.uni-sb.de

o Sven Schewe
E 1 3/508
schewe@cs.uni-sb.de

4Bernd Finkbeiner Verification - Lecture 1

This course is about…

Computer-Aided Verification

1. Verification:
find errors, or
prove that the system is correct.

2. Computer-Aided:
completely automatic, or
computer checks proof and helps
with low-level details.

5Bernd Finkbeiner Verification - Lecture 1

Context

Verification

Semantics

Concurrent
programming

Logic

Automata theory

Theory

Specification logics, Model
checking algorithms, proof
systems

Tools

SPIN, STeP, SMV,
PVS, UPPAAL,
KRONOS, ACL2,
Murϕ, VIS, …

Applications

Protocols, distributed
algorithms, medical
equipment, power
plants, …

6Bernd Finkbeiner Verification - Lecture 1

Badmouth

Verification can only be done by mathematicians.

The verification process is itself prone to errors,
so why bother?

Using formal methods will slow down the project.

2

7Bernd Finkbeiner Verification - Lecture 1

Some answers...

Verification can only be done by mathematicians.

Verification is based on mathematics
but the user often does not need to know the math.

The verification process is itself prone to errors,
so why bother?

Ultimately we reduce errors, we don‘t claim to eliminate them.

Using formal methods will slow down the project.

It may speed it up, if errors are found earlier.

8Bernd Finkbeiner Verification - Lecture 1

Verification Techniques

Deductive Verification:
Using some logical formalism, prove formally that the software
satisfies its specification.

Model Checking:
Use some software to automatically check that the software
satisfies its specification.

Testing:
Check computations of the software according to some coverage
scheme. (Testing can only show the presence of errors, never the
absence of errors. We won‘t focus on testing in this course.)

9Bernd Finkbeiner Verification - Lecture 1

1960’s 70’s 80’s 90’s 00’s

Temporal Logic

Model checking
Deductive verification

CombinationsChronology:

Flow Charts

10Bernd Finkbeiner Verification - Lecture 1

_
+

Deductive Verification Model Checking

Combination

Infinite-state Finite-state

Only proofs Counterexamples

Interactive Automatic

_

_
+

+

+
+
+_

(undecidable in general)

11Bernd Finkbeiner Verification - Lecture 1

Popular exaggerations

Model checking automatically finds errors.

Deductive verification can show that the
software is completely safe.

12Bernd Finkbeiner Verification - Lecture 1

Deductive Verification
a proof system for linear-time temporal logic
Model Checking
linear and branching-time model checking
automata over infinite objects
Abstraction
combining deductive verification and model checking
Advanced Topics
real-time/hybrid systems, game logics, …

Course Outline

3

Course formalities…

14Bernd Finkbeiner Verification - Lecture 1

Homework Problems

One problem set per week
Mostly paper & pencil exercises, some exercises with tools

Problem sets will be published on the web site on Tuesdays
(first one today)
Problem sets are due on Tuesday the following week before the lecture
Will be discussed on Wednesday / Thursday

We will try to return the problem sets as soon as possible
Help us by submitting early ☺

>50% points in Homework Problems -> Admission to final exam

15Bernd Finkbeiner Verification - Lecture 1

Exam Policy

Midterm Exam: 20.12.2007
Final Exam: 22.02.2008
Backup Exam: 04.04.2008

Requirement for admission to final exam: more than
50% points in homeworks
Requirement for admission to backup exam: passing
grade in either midterm or final (but not both)
You pass the course if you pass two exams
Your final grade is the average of the two passing grades

16Bernd Finkbeiner Verification - Lecture 1

Software Reliability Methods

by Doron A. Peled
Springer Verlag; ISBN: 0387951067

Literature Recommendations

17Bernd Finkbeiner Verification - Lecture 1

Temporal Verification of Reactive
Systems – Safety

by Zohar Manna and Amir Pnueli

Springer Verlag; ISBN: 0387944591

Literature Recommendations

18Bernd Finkbeiner Verification - Lecture 1

Model Checking

by Edmund M. Clarke, Jr.,
Orna Grumberg and Doron A. Peled

MIT Press; ISBN: 0262032708

Literature Recommendations

4

19Bernd Finkbeiner Verification - Lecture 1

Principles of Model Checking

by Christel Baier and
Joost-Pieter Katoen

To appear in Spring 2008

(we’ll distribute selected chapters in
class.)

Literature Recommendations

Deductive Verification

Robert Floyd Tony Hoare Amir Pnueli Zohar Manna

A first example

Peterson‘s Mutual Exclusion Algorithm

22Bernd Finkbeiner Verification - Lecture 1

Version 1
Protection variables

P1 is interested

P1 waits

P1 resets y1

23Bernd Finkbeiner Verification - Lecture 1

Problem: deadlock possible

1
2

3
4

May reach l3, m3 with

y1 = y2 = T

24Bernd Finkbeiner Verification - Lecture 1

Version 2
Signature variable

P1 requests priority

P1 has priority
(P2 was the last

to request priority)

5

25Bernd Finkbeiner Verification - Lecture 1

Properties of Version 2

Mutual exclusion:

P1 and P2 are never simultaneously
in their critical sections

1-Bounded Overtaking:

P2 can visit its critical section at most once
before P1 gets to visit its critical section
(if P1 is waiting).

Accessibility:

If P1 leaves the noncritical section it will eventually enter the
critical section.

26Bernd Finkbeiner Verification - Lecture 1

Version 2

Simultaneous assignment
may not be available.

Version 3: split
assignment

27Bernd Finkbeiner Verification - Lecture 1

Version 3

28Bernd Finkbeiner Verification - Lecture 1

Problem: Violation of Mutual Exclusion

1
2

3
4

May reach l5, m5

7

5
6

8

29Bernd Finkbeiner Verification - Lecture 1

Version 4

Swap comands

Correct?

Modeling Software Systems

6

31Bernd Finkbeiner Verification - Lecture 1

Types of Systems

Sequential systems.

Reactive systems.

Distributed systems.
Concurrent systems.
Embedded systems (software + hardware).

We‘ll focus on reactive systems

32Bernd Finkbeiner Verification - Lecture 1

Observable only at the beginning and
end of their execution

with no interaction with the environment.

Sequential systems typically terminate.

Specified by input-output relations
→ First-Order Logic.

Sequential Systems

input system output

33Bernd Finkbeiner Verification - Lecture 1

Reactive Systems

Observable throughout their execution

Reactive Systems typically don‘t terminate.

Interaction with environment specified by the ongoing
behavior (interaction history)
→ automata, temporal logic

system
↑↓ ↑↓ ↑↓ ↑↓ ↑↓

↑↓ ↑↓ ↑↓ ↑↓ ↑↓

time

34Bernd Finkbeiner Verification - Lecture 1

Vocabulary
a set of typed variables

Expressions over x+y

Assertions over x>y

A state is an interpretation over

Example:
= {x,y}

s = <x:1, y:2>
(also written as s[x]=1, s[y]=2)
x>y is false on s

Set of all states:

States

35Bernd Finkbeiner Verification - Lecture 1

Transition Systems

A (finite) set of variables
System variables: data variables + control variables

Initial condition
first-order assertion over
that characterizes all initial states

A (finite) set of transitions

36Bernd Finkbeiner Verification - Lecture 1

Transitions

For each τ ∈ : τ:

(each transition is a function from states to sets of states)

s‘ is a τ-successor of s if s‘ ∈ τ(s)
τ is represented by the transition relation ρ(τ)
(next-state relation)

values of variables in the current state

values of variables in the next state

7

37Bernd Finkbeiner Verification - Lecture 1

Enabled/Disabled/Taken Transitions

A transition τ

is enabled on s if τ(s) ≠ {}

is disabled on s if τ(s) = {}

For an infinite sequence of states

σ: s0, s1, s2, …

a transition τ

is enabled at position k if it is enabled on sk

is taken at position k if sk+1 is a τ-successor of sk

38Bernd Finkbeiner Verification - Lecture 1

The Interleaving Model

Infinite sequence of states

σ: s0, s1, s2, …

is a run of a transition system, if it satisfies the following:

Initiality: s0 satisfies

Consecution: For each i= 0,1, …

si+1∈ τ(si) there is a transition τ ∈ s.t.

39Bernd Finkbeiner Verification - Lecture 1

Example

s0=<a=2, b=1, c=2, d=1, e=0>
(satisfies the initial condition)
(first transition taken)
s1=<a=2, b=1, c=1, d=1, e=1>
(second transition taken)
s2=<a=2, b=1, c=1, d=0, e=2>
(first transition taken again)
s3=<a=2, b=1 ,c=0, d=0, e=3>

: {a, b, c, d, e: integer}
: c=a ∧ d=b ∧ e=0
: {τ1, τ2}

ρ(τ1) : c>0 ∧ c’=c-1 ∧ e’= e+1
ρ(τ2) : d>0 ∧ d’=d-1 ∧ e’= e+1

40Bernd Finkbeiner Verification - Lecture 1

Idling Transition

What if no transition is enabled?

We implicitly assume that there is an
idling transition (stuttering transition) τI

ρ(τI) : V = V‘

The idling transition is always enabled.

41Bernd Finkbeiner Verification - Lecture 1

Reachable States

For a transition system Φ,
a state s is Φ-accessible if there is a run

σ: s0, s1, s2, …
with s=si, for some i.

A transition system Φ is finite-state if the set of all
Φ-accessible states is finite.

42Bernd Finkbeiner Verification - Lecture 1

Atomic Transitions

Each atomic transition represents a small piece of code
such that no smaller piece of code is observable.
Is a:=a+1 atomic?
In some systems, e.g., when a is a register and the
transition is executed using an inc command.

8

43Bernd Finkbeiner Verification - Lecture 1

Non-atomicity

Execute the following when
a=0 in two concurrent
processes:

P1:a=a+1
P2:a=a+1

Result: a=2.
Is this always the case?

Consider the actual
translation:

P1:load R1,a
inc R1
store R1,a

P2:load R2,a
inc R2
store R2,a

a may also be 1.

44Bernd Finkbeiner Verification - Lecture 1

The Scheduler

Start from some initial state s0 such that s0 satisfies .
Set s = s0.

Loop forever:
Pick a transition τ that is currently enabled at s.
Select a new state state s‘ in τ(s).
Set s=s‘.

Nondeterministic choice.

Fairness?

45Bernd Finkbeiner Verification - Lecture 1

Fair Transition Systems

set of just (weakly fair) transitions
set of compassionate (strongly fair) transitions

Justice: for each just transition it is not the case that
the transition is continually enabled but only taken at
finitely many positions.
Compassion: for each compassionate transition it is not
the case that the transition is enabled at infinitely many
positions but only taken at finitely many positions.

46Bernd Finkbeiner Verification - Lecture 1

Example

s0=<x=0, y=0>
(satisfies the initial condition)
s1=<x=1, y=0>
(τx taken)
s2=<x=0, y=0>
(τx taken)
s3=<x=1, y=0>
(τx taken)
…

: {x,y: integer}
: x=0 ∧ y=0
: {τI, τx, τy}
: {τx}
: {τy}

ρ(τx) : x’ = x+1 mod 2
ρ(τy) : x=1 ∧ y‘ = y+1

Justice: YES

Compassion: NO (τy is infinitely often enabled but never taken.)

47Bernd Finkbeiner Verification - Lecture 1

Computations

An infinite sequence of states

σ: s0, s1, s2, …

is a computation of a fair transition system, if it satisfies:

Initiality
Consecution
Justice
Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness

Specifying Properties in
Linear Time Temporal Logic

9

49Bernd Finkbeiner Verification - Lecture 1

Temporal Logic

Two views:

Linear Time Temporal Logic: LTL
Program generates infinite sequences of states
Models of LTL formulas are infinite sequences of states

Computation Tree Logic
Program generates an infinite tree,
where branching points represent nondeterminism
in the program
Models of CTL formulas are infinite trees.

We‘ll continue with LTL and return to CTL later in the course.

50Bernd Finkbeiner Verification - Lecture 1

LTL

LTL is defined relative to an underlying assertion
language, in which conditions over individual states are
formulated.

For example: propositional logic, first-order logic.
In this part of the course, we use a first-order language
over interpreted symbols (functions and relations over
concrete domains).

Example: x>5

Formulas of this language are called
state formulas or assertions.

51Bernd Finkbeiner Verification - Lecture 1

Temporal Operators

ϕϕϕ ϕϕϕϕHenceforth

ϕ

ϕϕ ψϕϕ

ϕ

ϕ Eventually

ϕ

ψϕ Until

Wait-forϕ ψ ∨ ψϕϕ

Nextϕ

52Bernd Finkbeiner Verification - Lecture 1

LTL Syntax

Every assertion is a temporal formula.

If ϕ and ψ are temporal formulas, then so are

ϕ ϕ ψϕ ϕ ψ

¬ ϕ ϕ ∨ ψ ϕ ∧ ψ

ϕ

53Bernd Finkbeiner Verification - Lecture 1

LTL formulas are evaluated over an infinite sequence of
states

σ: s0, s1, s2, …

The semantics of an LTL formula ϕ is defined inductively
at position j≥0

(σ,j) ϕ

LTL Semantics

54Bernd Finkbeiner Verification - Lecture 1

LTL Semantics

For state formulas:

For temporal formulas:

p evaluated locally using
the interpretation of sj

10

55Bernd Finkbeiner Verification - Lecture 1

LTL Semantics

x

x

x

x

x

56Bernd Finkbeiner Verification - Lecture 1

Examples

if initially p then eventually q

every p is eventually followed by a q

infinitely many q

57Bernd Finkbeiner Verification - Lecture 1

Examples

finitely many ¬q

if there are infinitely many p
then there are infinitely many q

q precedes p

58Bernd Finkbeiner Verification - Lecture 1

Abbreviations

stands for

(entailment)

stands for

(congruence)

stands for

(nested waiting-for)

59Bernd Finkbeiner Verification - Lecture 1

Peterson‘s Algorithm
Mutual exclusion:

1-Bounded Overtaking:

Accessibility:

Communal Accessibility:

∨
∨

60Bernd Finkbeiner Verification - Lecture 1

Satisfiability / Validity

For a temporal formula p
and sequence σ,

σ p iff (σ,0) p

The formula p is satisfiable if σ p for some sequence σ

The formula p is valid if σ p for all sequences σ

11

61Bernd Finkbeiner Verification - Lecture 1

Examples

x<5

is satisfiable

x<5 ∨ x≥5

is valid

x<5 ∧ x≥5

is unsatisfiable

62Bernd Finkbeiner Verification - Lecture 1

Congruences

63Bernd Finkbeiner Verification - Lecture 1

Expressiveness

There are properties (i.e., sets of sequences) that cannot be
expressed as LTL formulas.

Example: „x=0 is true only at even positions“
cannot be expressed.

Note: „x=0 is true exactly at the even positions“
can be expressed!

x=0 ∧ ((x=0) ↔ (x≠0))

LTL & Programs

65Bernd Finkbeiner Verification - Lecture 1

P-Validity

A LTL formula ϕ is valid over a program P,
written P ϕ,

if ϕ holds in the first state of every computation of P.

66Bernd Finkbeiner Verification - Lecture 1

P-Validity

12

67Bernd Finkbeiner Verification - Lecture 1

P-Validity

P ϕ
P-valid
„ϕ holds in the
first position
of every P-
computation“

ϕ
Valid
„ϕ holds in the
first position
of every
sequence“

temporal
formula ϕ.

P q
P-state valid
„q holds in all
P-accessible
states“

q
state valid
„q holds in all
states“

state
formula q

program Pgeneral

