Recursion Theory

Problem 1: tt Degrees

4 Points

Show that every tt degree is countably infinite.

Problem 2: tt Reduction

4 Points

Show that
$\left\{e \mid \operatorname{dom}\left(\varphi_{e}\right)\right.$ is infinite $\} \leq_{\mathrm{tt}}\left\{e \mid \operatorname{dom}\left(\varphi_{e}\right)\right.$ is recursive $\}$.

Problem 3: Turing Cones

4 Points

Let $B \subseteq \mathbb{N}$. The Turing cone of B is the set $\mathcal{C}_{B}=\left\{A \mid A \leq_{T} B\right\} \subseteq 2^{\mathbb{N}}$.
Show that \mathcal{C}_{B} is a boolean algebra. To this end, do the following:
a) Show that \mathcal{C}_{B} is closed under union, intersection, and complement.
b) Show that there are elements $Z, O \in \mathcal{C}_{B}$ such that for every $A \in \mathcal{C}_{B}$

- $A \cup Z=A$ and $A \cap O=A$, and
- $A \cup \bar{A}=O$ and $A \cap \bar{A}=Z$.

Problem 4: Extra Credit

2 Points

Close the gap in the construction of the simple set S presented in last week's lecture.
To this end, show: for every partial recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ there is a total recursive function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(\mathbb{N})=g(\mathbb{N})$.

Remark: The points of this exercise do not count towards the total points achievable. §

