1

Problem 1: tt Degrees

Show that every tt degree is countably infinite.

Problem 2: tt Reduction

Show that

 $\{e \mid \operatorname{dom}(\varphi_e) \text{ is infinite}\} \leq_{\operatorname{tt}} \{e \mid \operatorname{dom}(\varphi_e) \text{ is recursive}\}.$

Problem 3: Turing Cones

Let $B \subseteq \mathbb{N}$. The Turing cone of B is the set $\mathcal{C}_B = \{A \mid A \leq_T B\} \subseteq 2^{\mathbb{N}}$.

Show that C_B is a boolean algebra. To this end, do the following:

a) Show that C_B is closed under union, intersection, and complement.

b) Show that there are elements $Z, O \in \mathcal{C}_B$ such that for every $A \in \mathcal{C}_B$

- $A \cup Z = A$ and $A \cap O = A$, and
- $A \cup \overline{A} = O$ and $A \cap \overline{A} = Z$.

Problem 4: Extra Credit

Close the gap in the construction of the simple set S presented in last week's lecture.

To this end, show: for every partial recursive function $f: \mathbb{N} \to \mathbb{N}$ there is a total recursive function $g: \mathbb{N} \to \mathbb{N}$ such that $f(\mathbb{N}) = g(\mathbb{N})$.

Remark: The points of this exercise do not count towards the total points achievable. §

Summer term 2015 Problem Set 12 Due: Tuesday, July 21st, 2015

2 Points

4 Points

4 Points

4 Points