Recursion Theory

Problem 1: Sum of Sets

The (recursion-theoretic) sum of two sets $A, B \subseteq \mathbb{N}$ is defined as

 $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$

Show that $A \oplus B$ is the least upper bound of A and B with respect to \leq_m , i.e., show

- 1. $A \leq_m A \oplus B$ and $B \leq_m A \oplus B$, and
- 2. if $A \leq_m C$ and $B \leq_m C$, then also $A \oplus B \leq_m C$.

Problem 2: Reductions 1 + 2 + 2 + 2 Points

Let \mathcal{P} be the set of prime numbers, let $E = \{e \mid \operatorname{dom}(\varphi_e) = \emptyset\}$, Tot = $\{e \mid \operatorname{dom}(\varphi_e) = \mathbb{N}\}$, and Inf = $\{e \mid \operatorname{dom}(\varphi_e) \text{ infinite}\}$.

Show $\mathcal{P} \leq_m E \leq_m \text{Tot} \equiv_m \text{Inf.}$

Problem 3: Tongue-in-Cheek

1 Point

Some natural numbers can be defined by sentences (in English) with at most twenty-five words, e.g.,

- 0: the number of wings the majority of people has.
- 1: the number of noses the majority of people has.
- 2: the number of ears the majority of people has.

Let n_0 be the smallest natural number that cannot uniquely be defined by sentences (in English) with at most twenty-five words.

Is n_0 well-defined?

2 + 2 Points