Recursion Theory

Problem 1: Sum of Sets

$2+2$ Points

The (recursion-theoretic) sum of two sets $A, B \subseteq \mathbb{N}$ is defined as
$A \oplus B=\{2 x \mid x \in A\} \cup\{2 x+1 \mid x \in B\}$.
Show that $A \oplus B$ is the least upper bound of A and B with respect to \leq_{m}, i.e., show

1. $A \leq_{m} A \oplus B$ and $B \leq_{m} A \oplus B$, and
2. if $A \leq_{m} C$ and $B \leq_{m} C$, then also $A \oplus B \leq_{m} C$.

Problem 2: Reductions
 $1+2+2+2$ Points

Let \mathcal{P} be the set of prime numbers, let $E=\left\{e \mid \operatorname{dom}\left(\varphi_{e}\right)=\emptyset\right\}$, $\operatorname{Tot}=\left\{e \mid \operatorname{dom}\left(\varphi_{e}\right)=\mathbb{N}\right\}$, and $\operatorname{Inf}=\left\{e \mid \operatorname{dom}\left(\varphi_{e}\right)\right.$ infinite $\}$.

Show $\mathcal{P} \leq_{m} E \leq_{m}$ Tot \equiv_{m} Inf.

Problem 3: Tongue-in-Cheek

1 Point

Some natural numbers can be defined by sentences (in English) with at most twenty-five words, e.g.,

- 0: the number of wings the majority of people has.
- 1: the number of noses the majority of people has.
- 2: the number of ears the majority of people has.

Let n_{0} be the smallest natural number that cannot uniquely be defined by sentences (in English) with at most twenty-five words.

Is n_{0} well-defined?

