Recursion Theory

Problem 1: Back to the Basics

- 1. Let $A \subseteq \mathbb{N}$ and $\overline{A} = \mathbb{N} \setminus A$ be μ -recursively enumerable. Show that A is μ -recursive.
- 2. Let $A \subseteq \mathbb{N}$ be μ -recursive. Show that A and \overline{A} are μ -recursively enumerable.

Problem 2: K and Tot

Let $K = \{x \mid \varphi_x(x) \downarrow\}$, let $\overline{K} = \mathbb{N} \setminus K$, and let $\operatorname{Tot} = \{x \mid \varphi_x \text{ is total}\}$. In the lecture, we proved $K \leq_m \text{Tot.}$

- 1. Show that $\overline{K} \leq_m$ Tot holds as well.
- 2. Show that neither Tot $\leq_m K$ nor Tot $\leq_m \overline{K}$ hold.
- 3. Show that neither Tot or $\overline{\text{Tot}}$ are enumerable.

Problem 3: Enumerable vs. Recursive 4 Points

Show that every infinite μ -recursively enumerable set contains an infinite μ -recursive set.

2 + 2 Points

2 + 1 + 1 Points