Recursion Theory

Problem 1: A "Wrong" Definition

For a given partial function $g: \mathbb{N}^{n+1} \to \mathbb{N}$ define the partial function $f: \mathbb{N}^n \to \mathbb{N}$ by

$$f(\overline{x}) = \begin{cases} \min \{y \mid g(\overline{x}, y) = 0\} & \text{if } \{y \mid g(\overline{x}, y) = 0\} \neq \emptyset, \\ \bot & \text{otherwise.} \end{cases}$$

We write $f(\overline{x}) = \hat{\mu}y \colon g(\overline{x}, y) = 0$ for short.

Show that there is a μ -recursive function g such that $\hat{\mu}y: g(\overline{x}, y) = 0$ is not μ -recursive.

Problem 2: The Function U

Let $f(x) = c_0^{(1)}(\mu y : T_1 x x y).$

Show that there is no primitive recursive relation $R \subseteq \mathbb{N} \times \mathbb{N}$ such that $f(x) = \mu y \colon Rxy$.

This implies that the *output function* U in the statement of the Kleene Normal Form theorem is necessary.

Problem 3: Fun with Functions 2 + 2 + 2 Points

- 1. Show that there is an e with $\varphi_e(x) = e^2 + x$.
- 2. Show that there is an e with dom(φ_e) = { $e^2 + e$ }.
- 3. Show that there is total μ -recursive function $t \colon \mathbb{N} \to \mathbb{N}$ such that $\varphi_{t(k)}$ is the function $x \mapsto x^k$ for every k.

4 Points

2 Points