Recursion Theory

Problem 1: A "Wrong" Definition

4 Points

For a given partial function $g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ define the partial function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ by

$$
f(\bar{x})= \begin{cases}\min \{y \mid g(\bar{x}, y)=0\} & \text { if }\{y \mid g(\bar{x}, y)=0\} \neq \emptyset \\ \perp & \text { otherwise }\end{cases}
$$

We write $f(\bar{x})=\hat{\mu} y: g(\bar{x}, y)=0$ for short.
Show that there is a μ-recursive function g such that $\hat{\mu} y: g(\bar{x}, y)=0$ is not μ-recursive.

Problem 2: The Function U

2 Points

Let $f(x)=c_{0}^{(1)}\left(\mu y: T_{1} x x y\right)$.
Show that there is no primitive recursive relation $R \subseteq \mathbb{N} \times \mathbb{N}$ such that $f(x)=\mu y$: Rxy. This implies that the output function U in the statement of the Kleene Normal Form theorem is necessary.

Problem 3: Fun with Functions

$2+2+2$ Points

1. Show that there is an e with $\varphi_{e}(x)=e^{2}+x$.
2. Show that there is an e with $\operatorname{dom}\left(\varphi_{e}\right)=\left\{e^{2}+e\right\}$.
3. Show that there is total μ-recursive function $t: \mathbb{N} \rightarrow \mathbb{N}$ such that $\varphi_{t(k)}$ is the function $x \mapsto x^{k}$ for every k.
