Recursion Theory

Problem 1: Ackermann Function

2 + 6 Points

Recall the definition of the Ackermann function A:

A(0, y) = y + 1 A(x + 1, 0) = A(x, 1)A(x + 1, y + 1) = A(x, A(x + 1, y))

For $n \in \mathbb{N}$ we define $f_n \colon \mathbb{N} \to \mathbb{N}$ by $f_n(y) = A(n, y)$.

- 1. Show that f_n is primitive recursive for every n.
- 2. Show that A is μ -recursive.

Hint: For 2.), retrace the evaluation of A(2, 1).

Problem 2: Function Iteration

Given a function $f: \mathbb{N} \to \mathbb{N}$ we define the *i*-th iterate $f^i: \mathbb{N} \to \mathbb{N}$ of f inductively via $f^0(x) = x$ and $f^{i+1}(x) = f(f^i(x))$.

Prove: if f is primitive recursive, then so is $g: \mathbb{N}^2 \to \mathbb{N}$ defined by $g(x, i) = f^i(x)$.

Problem 3: Tongue-in-Cheek

2 Points

2 Points

Some natural numbers are "interesting", e.g.,

- 0 is interesting, because it is the additive identity,
- 1 is interesting, because it is the multiplicative identity,
- 2 is interesting, because it is the only even prime number, etc.

Show that every natural number is interesting.