Recursion Theory

Problem 1: Ackermann Function

$2+6$ Points

Recall the definition of the Ackermann function A :

$$
\begin{aligned}
& A(0, y)=y+1 \\
& A(x+1,0)=A(x, 1) \\
& A(x+1, y+1)=A(x, A(x+1, y))
\end{aligned}
$$

For $n \in \mathbb{N}$ we define $f_{n}: \mathbb{N} \rightarrow \mathbb{N}$ by $f_{n}(y)=A(n, y)$.

1. Show that f_{n} is primitive recursive for every n.
2. Show that A is μ-recursive.

Hint: For 2.), retrace the evaluation of $A(2,1)$.

Problem 2: Function Iteration

2 Points

Given a function $f: \mathbb{N} \rightarrow \mathbb{N}$ we define the i-th iterate $f^{i}: \mathbb{N} \rightarrow \mathbb{N}$ of f inductively via $f^{0}(x)=x$ and $f^{i+1}(x)=f\left(f^{i}(x)\right)$.
Prove: if f is primitive recursive, then so is $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $g(x, i)=f^{i}(x)$.

Problem 3: Tongue-in-Cheek

Some natural numbers are "interesting", e.g.,

- 0 is interesting, because it is the additive identity,
- 1 is interesting, because it is the multiplicative identity,
- 2 is interesting, because it is the only even prime number, etc.

Show that every natural number is interesting.

