Dr. Martin Zimmermann Leander Tentrup, M.Sc.

Summer term 2015 Problem Set 2 Due: Tuesday, May 5th, 2015

Recursion Theory

Please indicate your **name** and your **matriculation number** on your solution and hand it in before the tutorial. We encourage you to collaborate in **groups** of up to **two** students. Only one submission per group is necessary.

Problem 1: Minimality

Show that the instruction set of register machines is minimal in the following sense: for every type of instruction (increment, decrement, and conditional jump), give a function that is computable by a URM, and prove that it is not computable by a URM without this type of instruction.

Problem 2: Encoding URMs

0.5 + 1 + 0.5 Points

Consider the following URM \mathcal{P} :

- 1. $DEC(X_1)$
- 2. IF $X_1 > 0$ GOTO 1
- 3. STOP
 - a) Determine for every $n \in \mathbb{N}$ the function $f \colon \mathbb{N}^n \to \mathbb{N}$ computed by \mathcal{P} .
 - b) Determine $\operatorname{code}(\mathcal{P})$.
 - c) Determine a number e that does not encode a register machine.

Problem 3:

Show: every URM-computable function $f \colon \mathbb{N} \to \mathbb{N}$ has infinitely many indices, i.e., numbers $e \in \mathbb{N}$ with $\varphi_e = f$.

Problem 4:

1+1 Points

- a) Determine $\varphi_e(x)$ for e = 131249 and x = 3.
- b) Determine $\varphi_e(x)$ for e = 24575 and x = 2.

2 + 2 + 2 Points

2 Points