Recursion Theory

Please indicate your **name** and your **matriculation number** on your solution and hand it in before the tutorial. We encourage you to collaborate in **groups** of up to **two** students. Only one submission per group is necessary.

Problem 1: Enumerability vs. Computability 2 Points

Show: If $A \subseteq \mathbb{N}$ is enumerable, then there exists a computable function $f \colon \mathbb{N} \to \mathbb{N}$ with $\operatorname{dom}(f) = A$.

A proof sketch using a flow chart as in the lecture is sufficient, if you argue that it is correct.

Problem 2: Monotone Enumerability 4 Points

An algorithm \mathcal{A} enumerates a set $A \subseteq \mathbb{N}$ monotonically iff \mathcal{A} started (without input) returns one by one (in the natural order on \mathbb{N}) exactly the elements of \mathcal{A} .

Prove: A is monotonically enumerable \Leftrightarrow A is decidable.

A proof sketch using a flow chart as in the lecture is sufficient, if you argue that it is correct.

Problem 3: URMs

2+2+2 Points

Give URMs that compute the following functions:

- a) sgn: $\mathbb{N} \to \mathbb{N}$ defined by sgn $(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$
- b) grtr: $\mathbb{N}^2 \to \mathbb{N}$ defined by grtr $(x, y) = \begin{cases} 0 & \text{if } x \leq y, \\ 1 & \text{if } x > y. \end{cases}$
- c) div3: $\mathbb{N} \to \mathbb{N}$ defined by div3(x) = $\begin{cases}
 \frac{x}{3} & \text{if } x \text{ is a multiple of } 3, \\
 \bot & \text{otherwise.}
 \end{cases}$

Here, \perp denotes that the function is undefined.