(4 + 1 + 1)

(3)

Exercise 13.1 - Emptiness Game

Complete the proof of Theorem 5.2 in the lecture notes. To this end, show that if $q_I \in W_0(\mathcal{G}(\mathscr{A}))$, then $\mathcal{L}(\mathscr{A}) \neq \emptyset$.

Exercise 13.2 - Emptiness Game, Example

Consider the parity tree automaton $\mathscr{A} = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, q_0, \Delta, \Omega)$ where Δ and Ω are defined by $\Omega(q_3) = 1$, $\Omega(q_0) = \Omega(q_4) = 2$, $\Omega(q_1) = \Omega(q_2) = 3$ and

- a) Construct the emptiness game $\mathcal{G}(\mathscr{A})$ and determine the winner from (ε, q_0) .
- b) Give a tree $t \in \mathcal{L}(\mathscr{A})$ as function $t \colon \mathbb{B}^* \to \{a, b\}$.
- c) Give a precise description of $\mathcal{L}(\mathscr{A})$ using natural language.

Exercise 13.3 - Regular Trees

$$(4 + 2)$$

(2 Bonus Points)

A tree $t: \mathbb{B}^* \to \Sigma$ is regular iff it has finitely many different sub-trees, i.e., if the set $\{t_w \mid w \in \mathbb{B}^*\}$ is finite.

Let $\mathscr{W} = (Q, \mathbb{B}, q_I, \delta, \lambda)$ be a deterministic finite word automaton (DFA) where we have replaced the set of accepting states by a labeling $\lambda \colon Q \to \Sigma$. We denote the unique state in which the run of \mathscr{W} on $w \in \mathbb{B}^*$ is ending by $\delta^*(w)$. The automaton generates the tree $t_{\mathscr{W}} \colon \mathbb{B}^* \to \Sigma$ defined by $t_{\mathscr{W}}(w) = \lambda(\delta^*(w))$ for all $w \in \mathbb{B}^*$.

- a) Show that a tree is regular if and only if it is generated by some DFA.
- b) Show that every non-empty tree language recognized by a parity tree automaton contains a regular tree.

Exercise 13.4 - Challenge

In the lecture we proved that the emptiness problem for a parity tree automaton \mathscr{A} is reducible to solving a parity game $\mathcal{G}(\mathscr{A})$, where $|\mathcal{G}(\mathscr{A})|$ is polynomial in $|\mathscr{A}|$.

Prove the converse, i.e., show that for every parity game \mathcal{G} and vertex v of \mathcal{G} , there is a parity tree automaton $\mathscr{A}_{\mathcal{G},v}$ such that $v \in W_0(\mathcal{G})$ if and only if $\mathcal{L}(\mathscr{A}_{\mathcal{G},v}) \neq \emptyset$. Furthermore, $|\mathscr{A}_{\mathcal{G},v}|$ should be polynomial in $|\mathcal{G}|$.