Infinite Games

Exercise 12.1 - Parity Tree Automata

Give parity tree automata recognizing the following tree languages over the alphabet $\Sigma = \{a, b, c\}$:

- a) The language of trees containing an *a*-labeled vertex whose left sub-tree contains a *b*-labeled vertex and whose right sub-tree contains a *c*-labeled vertex.
- b) The language of trees t satisfying $t_{|0^{\omega}} \in (aa)^* b^{\omega}$.
- c) The language of trees containing at least one *a*-labeled vertex and at least one *b*-labeled vertex.

Exercise 12.2 - Closure Properties

Show that languages recognized by parity tree automata are closed under union and projection.

- a) Given two parity tree automata \mathscr{A}_1 and \mathscr{A}_2 over the same alphabet construct a parity tree automatom \mathscr{A} such that $\mathcal{L}(\mathscr{A}) = \mathcal{L}(\mathscr{A}_1) \cup \mathcal{L}(\mathscr{A}_2)$.
- b) Given a tree $t: \mathbb{B}^* \to \Sigma \times \Gamma$ we define its projection $p_{\Sigma}(t): \mathbb{B}^* \to \Sigma$ to its first component by $p_{\Sigma}(t)(w) = a$ for every $w \in \mathbb{B}^*$ with t(w) = (a, b).

Given a parity tree automaton \mathscr{A}_e over the alphabet $\Sigma \times \Gamma$ construct a parity tree automaton \mathscr{A} such that $\mathcal{L}(\mathscr{A}) = \{ p_{\Sigma}(t) \mid t \in \mathcal{L}(\mathscr{A}_e) \}.$

Exercise 12.3 - Acceptance Game

Complete the proof of Lemma 5.1 in the lecture notes. To this end, show that if $t \in \mathcal{L}(\mathscr{A})$, then $(\varepsilon, q_I) \in W_0(\mathcal{G}(\mathscr{A}, t))$.

Exercise 12.4 - Challenge

(2 Bonus Points)

Give a parity tree automaton recognizing the tree language over the alphabet $\Sigma = \{a, b, c\}$ containing exactly the trees having only finitely many *a*-labeled vertices. Argue informally why your solution is correct.

(2 + 2)

(5)

(2 + 2 + 2)