Dr. Martin Zimmermann Felix Klein, B.Sc.

Infinite Games

Exercise Sheet 11

(1+3+1)

(2+4)

(2+2)

Exercise 11.1 - S2S

Give S2S formulas defining the following tree languages over the alphabet $\Sigma = \{a, b, c\}$:

- a) The language of trees containing an *a*-labeled vertex whose left subtree contains a *b*-labeled vertex and whose right sub-tree contains a *c*-labeled vertex.
- b) The language of trees t satisfying $t_{|0^{\omega}} \in (aa)^* b^{\omega}$.
- c) The language of trees containing at least one *a*-labeled vertex and at least one *b*-labeled vertex.

Exercise 11.2 - Syntactic Sugar

Show that ε and \preceq are syntactic sugar.

- a) Give a formula $\varphi_{\varepsilon}(x)$ not containing ε with one free first-order variable x and no free second-order variable such that $t, \mu \vDash \varphi_{\varepsilon}$ if and only if $\mu(x) = \varepsilon$.
- b) Give a formula $\varphi_{\preceq}(x, y)$ not containing \preceq with two free first-order variables x and y and no free second-order variable such that $t, \mu \vDash \varphi_{\preceq}$ if and only if $\mu(x)$ is a prefix of $\mu(y)$.

Exercise 11.3 - Subset & Connectedness

Show that the subset-relation and "being connected" is expressible in S2S.

- a) Give a formula $\varphi_{\subseteq}(X,Y)$ with two free second-order variables X and Y and no free first-order variable such that $t, \mu \vDash \varphi_{\subseteq}$ if and only if $\mu(X) \subseteq \mu(Y)$.
- b) Give a formula $\varphi_c(X)$ with one free second-order variable X and no free first-order variable such that $t, \mu \vDash \varphi_c$ if and only if $\mu(X)$ is connected, i.e., if w and w' are in $\mu(X)$ and w' is a descendant of w, then all vertices on the path between w and w' are in $\mu(X)$, as well.

Exercise 11.4 - Challenge

(2 Bonus Points)

Give an S2S formula defining the tree language over the alphabet $\Sigma = \{a, b, c\}$ containing exactly the trees having only finitely many *a*-labeled vertices. Argue informally why your solution is correct.