Dr. Martin Zimmermann Felix Klein, B.Sc.

Exercise 10.1 - Recap (15)
1. Solving Muller games is in NP \cap Co-NP if \mathcal{F} is encoded
by a circuit? by a coloring function? by a tree? by an important subset? by a boolean formula?
2. In which of the following games is W_0 a trap for Player 1?
Reachability Request Response Parity Safety Büchi Challenging Reachability Weak Muller
3. In a game with n vertices, which of the following winning conditions has the largest memory requirements for Player 0 ? (for sufficiently large n)
Weak Muller Weak Parity Büchi Muller Parity Challenging Reachability Safety
4. What is the lower bound on the size of a winning strat. for Pl. 0 in weak Muller games?
$\mathcal{O}(\log \mathcal{F}) \mathcal{O}(V \cdot \mathcal{F}) \mathcal{O}(2^{2^{ V }}) 2^{\mathcal{O}(V)} \mathcal{O}(V ^2) \mathcal{O}(\log^*(V)) 4$
5. Which of the following winning conditions can be described by a parity condition?
SAFE BEORES WMULLER BÜCHL MULLER (\mathcal{F}) with \mathcal{F} reach chreach muller
6 Which of the following games are known to be solvable in polynomial time?
o. which of the following games are known to be solvable in polynomial time:
Pushdown Bipartite Parity Büchi Solitary Parity Weak Parity Challenging Parity
7. Which of the following statements hold? Reachability
$BUCHI(F) PARITY(\Omega) WMULLER(\mathcal{F}) SAFE(S) REQRES((Q_j, P_j)_{j \in [k]}) BUCHI(F) MULLER(\mathcal{F}) REACH(R)$
8. Which of the following winning conditions are prefix independent?
WMULLER COBÜCHI BÜCHI REQRES MULLER PARITY SAFE
9. For which of the following games has Player 1 positional winning strategies?
Muller Büchi Reachability co-Büchi Weak Parity Safety Parity Challenging
10. In which of the following games can Player 0 win with a uniform strategy? Reachability
Muller Reachability Challenging co-Büchi Weak Parity Request-Response Parity
11. Let $\mathcal{G} = (\mathcal{A}, \text{PARITY}(\Omega: V \to [k])$ be a parity game with $\operatorname{Par}(k) = 0$. How large is $ \operatorname{Sh}(\mathcal{G}) $?
$\overrightarrow{ V } \qquad \overrightarrow{2^{ V }} \qquad \overrightarrow{ V ^2} \qquad 1 + \prod_{c \in V} \overrightarrow{ \Omega^{-1}(c) } \qquad \overrightarrow{ V }_{2!+1} \qquad 42 \qquad V \cdot E $
12. Which of the following games are self-dual?
co-Büchi Request-Response Reachability Parity Challenging Weak Muller Weak Parity
13. In which of the following games may Player 0 need memory?
Büchi Weak Parity Safety Weak Muller Parity Request-Response Muller
14. Using game reductions, can you reduce
co-Büchi to Büchi Safety to Parity Muller Request-Response Büchi
Reachability? to Safety? Reachability? to Muller? to Büchi? to Parity? to Parity?
Muller Safety Request-Response Parity Büchi Reachability co-Büchi

Exercise 10.2 - Zielonka Trees, Rabin, Streett (10 Bonus Points)

Given a family $\mathcal{F} \subseteq 2^V$ of subsets of a finite set V, we define its Zielonka tree $\mathcal{Z}(\mathcal{F})$ recursively as follows:

- The root of $\mathcal{Z}(\mathcal{F})$ is labeled by the set of all vertices.
- Children of a node labeled with $F \in \mathcal{F}$ are the \subseteq -maximal subsets $F' \subseteq F$ with $F' \notin \mathcal{F}$.
- Children of a node labeled with $F \notin \mathcal{F}$ are the \subseteq -maximal subsets $F' \subseteq F$ with $F' \in \mathcal{F}$.

We already had an example of such a tree on page 39 of the lecture notes. We say that a vertex v of $\mathcal{Z}(\mathcal{F})$ is a Player 0 vertex if and only if its label is in \mathcal{F} .

Given a family $(Q_j, P_j)_{j \in [k]}$ of subsets $Q_j, P_j \subseteq V$ with $k \in \mathbb{N}$ we define the Rabin winning condition by

$$\operatorname{RABIN}((Q_j, P_j)_{j \in [k]}) = \{ \rho \in V^{\omega} \mid \exists j \in [k]. \operatorname{Inf}(\rho) \cap Q_j \neq \emptyset \land \operatorname{Inf}(\rho) \cap P_j = \emptyset \}$$

and the Streett winning condition by

$$\text{STREETT}((Q_j, P_j)_{j \in [k]}) = \{ \rho \in V^{\omega} \mid \forall j \in [k]. \text{ Inf}(\rho) \cap Q_j \neq \emptyset \Rightarrow \text{Inf}(\rho) \cap P_j \neq \emptyset \}$$

Given an arena $\mathcal{A} = (V, V_0, V_1, E)$ we then call the games $\mathcal{G}_r = (\mathcal{A}, \text{RABIN}((Q_j, P_j)_{j \in [k]}))$ and $\mathcal{G}_s = (\mathcal{A}, \text{STREETT}((Q_j, P_j)_{j \in [k]}))$ a Rabin game and a Street game, respectively.

Prove the following statements:

a) For every family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$ holds that

$$\operatorname{RABIN}((Q_j, P_j)_{j \in [k]}) = V^{\omega} \setminus \operatorname{STREETT}((Q_j, P_j)_{j \in [k]}).$$

- b) For every coloring function $\Omega: V \to \mathbb{N}$ there exists a family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$ such that $PARITY(\Omega) = RABIN((Q_j, P_j)_{j \in [k]})$.
- c) For every coloring function $\Omega: V \to \mathbb{N}$ there exists a family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$ such that $PARITY(\Omega) = STREETT((Q_j, P_j)_{j \in [k]})$.
- d) For every family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$ there is a set $\mathcal{F} \subseteq 2^V$ such that $\operatorname{RABIN}((Q_j, P_j)_{j \in [k]}) = \operatorname{MULLER}(\mathcal{F}).$
- e) For every family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$ there is a set $\mathcal{F} \subseteq 2^V$ such that $\operatorname{STREETT}((Q_j, P_j)_{j \in [k]}) = \operatorname{MULLER}(\mathcal{F}).$
- f) For every set $\mathcal{F} \subseteq 2^V$ holds: every Player 0 vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $MULLER(\mathcal{F}) = RABIN((Q_j, P_j)_{j \in [k]})$ for some family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$.
- g) For every set $\mathcal{F} \subseteq 2^V$ holds: every Player 1 vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $MULLER(\mathcal{F}) = STREETT((Q_j, P_j)_{j \in [k]})$ for some family $(Q_j, P_j)_{j \in [k]}$ with $j \in \mathbb{N}$ and $Q_j, P_j \subseteq V$.
- h) For every set $\mathcal{F} \subseteq 2^V$ holds: every vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $MULLER(\mathcal{F}) = PARITY(\Omega)$ for some coloring function $\Omega: V \to \mathbb{N}$.
- i) Let $\mathcal{Z}(\mathcal{F})$ be the Zielonka tree for some $\mathcal{F} \subseteq 2^V$ such that there is a Player *i* vertex of $\mathcal{Z}(\mathcal{F})$ which has two successors. Then there is a Muller game $\mathcal{G} = (\mathcal{A}, \text{MULLER}(\mathcal{F}))$ with vertex set *V* where Player *i* has a winning strategy from some $v \in V$, but no positional one.
- j) For every \mathcal{F}_n with $n \in \mathbb{N}^+$ defined as in the game DJW_n we have that $\mathcal{Z}(\mathcal{F}_n)$ has at least n! many leaves.