Exercise 10.1 - Recap

1. Solving Muller games is in NP \cap Co-NP if \mathcal{F} is encoded
by a circuit? by a coloring function? by a tree? by an important subset? by a boolean formula?
2. In which of the following games is W_{0} a trap for Player 1?

3. In a game with n vertices, which of the following winning conditions has the largest memory requirements for Player 0? (for sufficiently large n)

4. What is the lower bound on the size of a winning strat. for Pl. 0 in weak Muller games?

5. Which of the following winning conditions can be described by a parity condition?

6. Which of the following games are known to be solvable in polynomial time?

Pushdown Bipartite Parity Büchi Solitary Parity Weak Parity
7. Which of the following statements hold?

Reachability

8. Which of the following winning conditions are prefix independent?

9. For which of the following games has Player 1 positional winning strategies?

10. In which of the following games can Player 0 win with a uniform strategy? Reachability

11. Let $\mathcal{G}=(\mathcal{A}, \operatorname{PaRity}(\Omega: V \rightarrow[k])$ be a parity game with $\operatorname{Par}(k)=0$. How large is $|\operatorname{Sh}(\mathcal{G})|$?
\square
$2^{|V|}$
\square
$\underset{\substack{1 \\ c \in \Omega(V), \operatorname{Par}(c)=1}}{\square}(c) \left\lvert\, \quad \frac{\square}{2}!+1\right.$

$|V| \cdot|E|$
12. Which of the following games are self-dual?

13. In which of the following games may Player 0 need memory?

14. Using game reductions, can you reduce

15. Which of the following games are determined?

Exercise 10.2-Zielonka Trees, Rabin, Streett

Given a family $\mathcal{F} \subseteq 2^{V}$ of subsets of a finite set V, we define its Zielonka tree $\mathcal{Z}(\mathcal{F})$ recursively as follows:

- The root of $\mathcal{Z}(\mathcal{F})$ is labeled by the set of all vertices.
- Children of a node labeled with $F \in \mathcal{F}$ are the \subseteq-maximal subsets $F^{\prime} \subseteq F$ with $F^{\prime} \notin \mathcal{F}$.
- Children of a node labeled with $F \notin \mathcal{F}$ are the \subseteq-maximal subsets $F^{\prime} \subseteq F$ with $F^{\prime} \in \mathcal{F}$.

We already had an example of such a tree on page 39 of the lecture notes. We say that a vertex v of $\mathcal{Z}(\mathcal{F})$ is a Player 0 vertex if and only if its label is in \mathcal{F}.

Given a family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ of subsets $Q_{j}, P_{j} \subseteq V$ with $k \in \mathbb{N}$ we define the Rabin winning condition by

$$
\operatorname{RABIN}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)=\left\{\rho \in V^{\omega} \mid \exists j \in[k] . \operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset \wedge \operatorname{Inf}(\rho) \cap P_{j}=\emptyset\right\}
$$

and the Streett winning condition by

$$
\operatorname{streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)=\left\{\rho \in V^{\omega} \mid \forall j \in[k] . \operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset \Rightarrow \operatorname{Inf}(\rho) \cap P_{j} \neq \emptyset\right\}
$$

Given an arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ we then call the games $\mathcal{G}_{r}=\left(\mathcal{A}, \operatorname{RABIN}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ and $\mathcal{G}_{s}=\left(\mathcal{A}, \operatorname{streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ a Rabin game and a Street game, respectively.

Prove the following statements:
a) For every family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$ holds that

$$
\operatorname{Rabin}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)=V^{\omega} \backslash \operatorname{streEtT}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)
$$

b) For every coloring function $\Omega: V \rightarrow \mathbb{N}$ there exists a family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$ such that $\operatorname{PaRITy}(\Omega)=\operatorname{Rabin}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)$.
c) For every coloring function $\Omega: V \rightarrow \mathbb{N}$ there exists a family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$ such that $\operatorname{PaRity}(\Omega)=\operatorname{StREETt}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)$.
d) For every family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$ there is a set $\mathcal{F} \subseteq 2^{V}$ such that $\operatorname{Rabin}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)=\operatorname{MULLER}(\mathcal{F})$.
e) For every family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$ there is a set $\mathcal{F} \subseteq 2^{V}$ such that $\operatorname{streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)=\operatorname{MULLER}(\mathcal{F})$.
f) For every set $\mathcal{F} \subseteq 2^{V}$ holds: every Player 0 vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $\operatorname{MULLER}(\mathcal{F})=\operatorname{Rabin}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)$ for some family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$.
g) For every set $\mathcal{F} \subseteq 2^{V}$ holds: every Player 1 vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $\operatorname{MULLER}(\mathcal{F})=\operatorname{streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)$ for some family $\left(Q_{j}, P_{j}\right)_{j \in[k]}$ with $j \in \mathbb{N}$ and $Q_{j}, P_{j} \subseteq V$.
h) For every set $\mathcal{F} \subseteq 2^{V}$ holds: every vertex of $\mathcal{Z}(\mathcal{F})$ has at most one successor if and only if $\operatorname{MULLER}(\mathcal{F})=\operatorname{Parity}(\Omega)$ for some coloring function $\Omega: V \rightarrow \mathbb{N}$.
i) Let $\mathcal{Z}(\mathcal{F})$ be the Zielonka tree for some $\mathcal{F} \subseteq 2^{V}$ such that there is a Player i vertex of $\mathcal{Z}(\mathcal{F})$ which has two successors. Then there is a Muller game $\mathcal{G}=(\mathcal{A}$, MULLer $(\mathcal{F}))$ with vertex set V where Player i has a winning strategy from some $v \in V$, but no positional one.
j) For every \mathcal{F}_{n} with $n \in \mathbb{N}^{+}$defined as in the game $D J W_{n}$ we have that $\mathcal{Z}\left(\mathcal{F}_{n}\right)$ has at least n ! many leaves.

