Exercise 9.1-Colorful Max-Parity

Let $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ be a, possibly countably infinite, arena. Given a coloring function $\Omega: V \rightarrow \mathbb{N}$ and $i_{\emptyset}, i_{\infty} \in\{0,1\}$ we define the max-parity condition as

$$
\operatorname{MAXPARITY}\left(\Omega, i_{\emptyset}, i_{\infty}\right)=\{\rho \in \operatorname{Plays}(\mathcal{A}) \mid \operatorname{Inf}(\Omega(\rho)) \text { is finite } \wedge \operatorname{Par}(\max (\operatorname{Inf}(\Omega(\rho))))=0\} \cup P_{\emptyset} \cup P_{\infty}
$$

where P_{\emptyset} and P_{∞} are defined as

$$
P_{\emptyset}=\left\{\begin{array}{ll}
\emptyset & \text { if } i_{\emptyset}=1 \\
\{\rho \mid \operatorname{Inf}(\Omega(\rho))=\emptyset\} & \text { if } i_{\emptyset}=0
\end{array} \quad \text { and } \quad P_{\infty}= \begin{cases}\emptyset & \text { if } i_{\infty}=1 \\
\{\rho \mid \operatorname{Inf}(\Omega(\rho)) \text { is infinite }\} & \text { if } i_{\infty}=0\end{cases}\right.
$$

Here, $\Omega(\rho)$ denotes the sequence of colors seen during ρ, i.e. $\Omega(\rho)=\Omega\left(\rho_{0}\right) \Omega\left(\rho_{1}\right) \Omega\left(\rho_{2}\right) \ldots \in \Omega(V)^{\omega}$. Accordingly, if only finitely many colors are seen infinitely often, then the parity of the maximal one determines the winner. If no color is seen infinitely often, then Player i_{\emptyset} wins, while Player i_{∞} wins if infinitely many colors are seen infinitely often.

Give an arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ and a coloring function $\Omega: V \rightarrow \mathbb{N}$ such that the winning regions of the games $\mathcal{G}_{i_{\emptyset}, i_{\infty}}=\left(\mathcal{A}\right.$, maxparity $\left.\left(\Omega, i_{\emptyset}, i_{\infty}\right)\right)$ are pairwise different for every value of $\left(i_{\emptyset}, i_{\infty}\right)$, that is if $\left(i_{\emptyset}, i_{\infty}\right) \neq\left(i_{\emptyset}^{\prime}, i_{\infty}^{\prime}\right)$ then $W_{0}\left(\mathcal{G}_{i_{\emptyset}, i_{\infty}}\right) \neq W_{0}\left(\mathcal{G}_{i_{\emptyset}^{\prime}, i_{\infty}^{\prime}}\right)$.

Exercise 9.2-Pushdown Systems and Transducers

$$
(2+4)
$$

a) Give a pushdown system, a partition of its states and a coloring function inducing the parity game sketched above, where only the part reachable from $\left(q_{i n}, \perp\right)$ is sketched.
b) Give a pushdown transducer implementing a winning strategy for one of the players from $\left(q_{i n}, \perp\right)$.

Exercise 9.3 - Pushdown Parity Games

Consider the family of pushdown systems $\mathcal{P}_{n}=\left(Q_{n},\{A\}, \Delta_{n}, q_{\text {in }}\right)$ for $n \in \mathbb{N}^{+}$with Q_{n} and Δ_{n} defined as follows.

- $Q_{n}=\left\{q_{\text {in }}, q_{A}\right\} \cup \bigcup_{j=1}^{n}\left\{q_{j}^{t} \mid t \in\left[p_{j}\right]\right\}$
where p_{j} denotes the j-th prime number, i.e. $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$
- $\Delta_{n}=\left\{\left(q_{\text {in }}, X, q_{\text {in }}, A X\right),\left(q_{\text {in }}, X, q_{A} \cdot A X\right) \mid X \in\{A, \perp\}\right\}$
$\cup\left\{\left(q_{A}, A, q_{j}^{0}, A\right) \mid j \in[1, n]\right\}$
$\cup\left\{\left(q_{j}^{t}, A, q_{j}^{t^{\prime}}, \varepsilon\right) \mid j \in[1, n], t \in\left[p_{j}\right], t^{\prime}=(t+1) \bmod p_{j}\right\}$
$\cup\left\{(q, \perp, q, \perp) \mid q \in Q_{n} \backslash\left\{q_{\text {in }}\right\}\right\}$
Further, let $Q_{0}=Q_{n} \backslash\left\{q_{A}\right\}$ and $Q_{1}=\left\{q_{A}\right\}$ be a partition of Q_{n} with $n \in \mathbb{N}^{+}$and let $\Omega: Q_{n} \rightarrow[2]$ be the coloring function defined by

$$
\Omega(q)= \begin{cases}0 & \text { if } \exists j \in[1, n] . q=q_{j}^{0} \\ 1 & \text { otherwise }\end{cases}
$$

Let \mathcal{G}_{n} be the pushdown parity game induced by \mathcal{P}_{n} and the partition and coloring defined above.
a) Draw \mathcal{G}_{2} up to stack height 8 and give a positional winning strategy from $\left(q_{\text {in }}, \perp\right)$ for one of the players.
b) Give a winning strategy from $\left(q_{\mathrm{in}}, \perp\right)$ for one of the players for every \mathcal{P}_{n} with $n \in \mathbb{N}^{+}$.

Exercise 9.4 - Challenge

(2 Bonus Points)
Show how to solve pushdown parity games that are induced by a pushdown system without pop transitions, some partition and some coloring function.

