Exercise Sheet 8

(2+2+2)

Exercise 8.1 - Closure Properties

Show that Σ_n and Π_n are closed under union and intersection for every $n \in \mathbb{N}^+$.

Exercise 8.2 - Borel Hierarchy

Let V be some finite set. Prove each membership in the Borel hierarchy stated below.

- a) WMULLER(\mathcal{F}) = { $\rho \in V^{\omega} \mid \operatorname{Occ}(\rho) \in \mathcal{F}$ } $\in \Sigma_2 \cap \Pi_2$ for every $\mathcal{F} \subseteq 2^V$.
- b) $\text{COBÜCHI}(C) = \{ \rho \in V^{\omega} \mid \text{Inf}(\rho) \subseteq C \} \in \Sigma_2 \text{ for every } C \subseteq V.$
- c) PARITY(Ω) = { $\rho \in V^{\omega}$ | Par(min($\Omega(Inf(\rho)))$) = 0 } $\in \Sigma_3 \cap \Pi_3$ for every $\Omega: V \to \mathbb{N}$.

Hint: Use the closure properties from Exercise 8.1.

Exercise 8.3 - Wadge Games

(2+2+1)

A language $L \subseteq \mathbb{B}^{\omega}$ is *complete* for a level Σ_n of the Borel hierarchy over \mathbb{B} iff $L \in \Sigma_n$ and $L' \leq L$ for every $L' \subseteq \mathbb{B}^{\omega}$ with $L' \in \Sigma_n$. Completeness for Π_n is defined similarly.

- a) Show that $0^*1(0+1)^{\omega}$ is complete for Σ_1 .
- b) Show that $(0^*1)^{\omega}$ is complete for Π_2 .
- c) Show that $(0^*1)^{\omega}$ is not in $\Sigma_1 \cup \Pi_1$.

Exercise 8.4 - Challenge

(2 Bonus Points)

Let $\mathcal{G} = (\mathcal{A}, \text{PARITY}(\Omega: V \to [k]))$ be a parity game. Show how you can construct a safety game $\mathcal{G}_s = (\mathcal{A} \times \mathcal{M}, \text{SAFE}(S))$ for some memory structure $\mathcal{M} = (M, \text{init}, \text{upd})$ such that for all $v \in V$ it holds that $v \in W_0(\mathcal{G}) \Leftrightarrow (v, \text{init}(v)) \in W_0(\mathcal{G}_s)$.

Hint: Revisit the small progress measure algorithm for parity games.

(4)