### Exercise 7.1 - Muller

a) Consider the Muller game  $\mathcal{G}_1 = (\mathcal{A}_1, \text{MULLER}(\mathcal{F}_1))$  with  $\mathcal{A}_1$  as depicted below and

$$\mathcal{F}_1 = \{\{v_0, v_1\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_4, v_5, v_6\}, \{v_0, v_1, v_2, v_6\}\}.$$



Determine the winning regions of  $\mathcal{G}_1$  and uniform finite-state winning strategies for both players. Specify the strategies by giving a memory structure (not necessarily the same for both players) and a next-move function.

b) Consider the Muller game  $\mathcal{G}_2 = (\mathcal{A}_2, \text{MULLER}(\mathcal{F}_2))$  with  $\mathcal{A}_2$  as depicted below and



Apply the LAR reduction to determine the winning regions of  $\mathcal{G}_2$ , where constructing the vertices reachable from  $\{(v, init(v)) \mid v \in \{v_0, v_1, v_2\}\}$  suffices.

# Exercise 7.2 - Union-closed Muller

A family  $\mathcal{F} \subseteq 2^V$  of sets is union-closed, if  $F \cup F' \in \mathcal{F}$  for all  $F, F' \in \mathcal{F}$ . A Muller game is doubly union-closed, if  $\mathcal{F}$  and  $2^V \setminus \mathcal{F}$  are union-closed.

Show that doubly union-closed Muller games are equivalent to parity games, i.e.

- for every doubly union-closed Muller game  $(\mathcal{A}, \text{MULLER}(\mathcal{F}))$  there exists a parity game  $(\mathcal{A}, \text{PARITY}(\Omega))$  such that  $\text{MULLER}(\mathcal{F}) = \text{PARITY}(\Omega)$  and
- for every parity game  $(\mathcal{A}, \text{PARITY}(\Omega))$  there exists a doubly union-closed Muller game  $(\mathcal{A}, \text{MULLER}(\mathcal{F}))$  such that  $\text{PARITY}(\Omega) = \text{MULLER}(\mathcal{F})$ .

(3 + 2)

(5)

## Exercise 7.3 - $\omega$ -regular Games

A (deterministic word) parity automaton  $\mathscr{A} = (Q, \Sigma, q_I, \delta, \Omega)$  is a tuple consisting of

- a finite set Q of states,
- an alphabet  $\Sigma$ ,
- an initial state  $q_I \in Q$ ,
- a transition function  $\delta \colon Q \times \Sigma \to Q$  and
- a coloring function  $\Omega: Q \to [k]$ .

The run  $r = r_0 r_1 r_2 \ldots \in Q^{\omega}$  of  $\mathscr{A}$  on an infinite input word  $\alpha \in \Sigma^{\omega}$  is defined by  $r_0 = q_I$  and  $r_{n+1} = \delta(r_n, \alpha_n)$  for all  $n \in \mathbb{N}^+$ . The run is accepting iff  $\operatorname{Par}(\min(\Omega(\inf(r)))) = 0$ . The language  $\mathcal{L}(\mathscr{A})$  of  $\mathscr{A}$  is the set of all input words whose run is accepting. A game  $\mathcal{G} = (\mathcal{A}, \operatorname{Win})$  is  $\omega$ -regular iff there exists a parity automaton  $\mathscr{A}$  with  $\mathcal{L}(\mathscr{A}) = \operatorname{Win}$ . Prove the following statements:

- a) Parity games are  $\omega$ -regular.
- b) Muller games are  $\omega$ -regular.
- c) Every  $\omega$ -regular game is determined with uniform finite-state winning strategies.

## Exercise 7.4 - Challenge

#### (2 Bonus Points)

Show that every uniform finite-state winning strategy for Player 0 in the game  $DJW_n$  has at least n! many memory states.

*Hint:* You can prove this by induction over  $n \in \mathbb{N}$ . Use the fact that  $DJW_{n+1}$  contains n+1 different copies of  $DJW_n$ .

# (1+2+2)