Infinite Games

Exercise 7.1-Muller

a) Consider the Muller game $\mathcal{G}_{1}=\left(\mathcal{A}_{1}, \operatorname{MULLER}\left(\mathcal{F}_{1}\right)\right)$ with \mathcal{A}_{1} as depicted below and

$$
\mathcal{F}_{1}=\left\{\left\{v_{0}, v_{1}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{5}, v_{6}\right\},\left\{v_{0}, v_{1}, v_{2}, v_{6}\right\}\right\} .
$$

Determine the winning regions of \mathcal{G}_{1} and uniform finite-state winning strategies for both players. Specify the strategies by giving a memory structure (not necessarily the same for both players) and a next-move function.
b) Consider the Muller game $\mathcal{G}_{2}=\left(\mathcal{A}_{2}, \operatorname{MULLER}\left(\mathcal{F}_{2}\right)\right)$ with \mathcal{A}_{2} as depicted below and

$$
\mathcal{F}_{2}=\left\{\left\{v_{0}\right\},\left\{v_{2}\right\},\left\{v_{0}, v_{1}, v_{2}\right\}\right\} .
$$

Apply the LAR reduction to determine the winning regions of \mathcal{G}_{2}, where constructing the vertices reachable from $\left\{(v, \operatorname{init}(v)) \mid v \in\left\{v_{0}, v_{1}, v_{2}\right\}\right\}$ suffices.

Exercise 7.2-Union-closed Muller

A family $\mathcal{F} \subseteq 2^{V}$ of sets is union-closed, if $F \cup F^{\prime} \in \mathcal{F}$ for all $F, F^{\prime} \in \mathcal{F}$. A Muller game is doubly union-closed, if \mathcal{F} and $2^{V} \backslash \mathcal{F}$ are union-closed.
Show that doubly union-closed Muller games are equivalent to parity games, i.e.

- for every doubly union-closed $\operatorname{Muller} \operatorname{game}(\mathcal{A}, \operatorname{MULLER}(\mathcal{F}))$ there exists a parity game $(\mathcal{A}, \operatorname{PaRity}(\Omega))$ such that $\operatorname{Muller}(\mathcal{F})=\operatorname{Parity}(\Omega)$ and
- for every parity game $(\mathcal{A}, \operatorname{parity}(\Omega))$ there exists a doubly union-closed Muller game $(\mathcal{A}, \operatorname{mulLER}(\mathcal{F}))$ such that $\operatorname{Parity}(\Omega)=\operatorname{muller}(\mathcal{F})$.

Exercise 7.3- ω-regular Games

A (deterministic word) parity automaton $\mathscr{A}=\left(Q, \Sigma, q_{I}, \delta, \Omega\right)$ is a tuple consisting of

- a finite set Q of states,
- an alphabet Σ,
- an initial state $q_{I} \in Q$,
- a transition function $\delta: Q \times \Sigma \rightarrow Q$ and
- a coloring function $\Omega: Q \rightarrow[k]$.

The run $r=r_{0} r_{1} r_{2} \ldots \in Q^{\omega}$ of \mathscr{A} on an infinite input word $\alpha \in \Sigma^{\omega}$ is defined by $r_{0}=q_{I}$ and $r_{n+1}=$ $\delta\left(r_{n}, \alpha_{n}\right)$ for all $n \in \mathbb{N}^{+}$. The run is accepting iff $\operatorname{Par}(\min (\Omega(\inf (r))))=0$. The language $\mathcal{L}(\mathscr{A})$ of \mathscr{A} is the set of all input words whose run is accepting. A game $\mathcal{G}=(\mathcal{A}$, Win $)$ is ω-regular iff there exists a parity automaton \mathscr{A} with $\mathcal{L}(\mathscr{A})=$ Win. Prove the following statements:
a) Parity games are ω-regular.
b) Muller games are ω-regular.
c) Every ω-regular game is determined with uniform finite-state winning strategies.

Exercise 7.4-Challenge

(2 Bonus Points)
Show that every uniform finite-state winning strategy for Player 0 in the game $D J W_{n}$ has at least n ! many memory states.

Hint: You can prove this by induction over $n \in \mathbb{N}$. Use the fact that $D J W_{n+1}$ contains $n+1$ different copies of $D J W_{n}$.

