Exercise 4.1 - Parity

Consider the parity game $\mathcal{G}=(\mathcal{A}, \operatorname{PaRITY}(\Omega: V \rightarrow[5]))$ with arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ depicted above. Compute the winning regions and uniform positional winning strategies for both players using the idea underlying the proof of Theorem 2.5. (Hint: You do not have to give intermediate steps for the attractor computations.)

Exercise 4.2-Weak Parity

In a parity game, the goal for Player i is to ensure that the minimal color that occurs infinitely often has parity i. By replacing "infinitely often" by "at least once" we get a definition for a weaker variant of parity games.

Definition E3.2.1. Let the weak parity condition Wparity (Ω) on a color function $\Omega: V \rightarrow[k]$ for some arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ and some $k \in \mathbb{N}$ be defined as:

$$
\operatorname{WPARITY}(\Omega):=\{\rho \in \operatorname{Plays}(\mathcal{A}) \mid \operatorname{Par}(\min (\Omega(\operatorname{Occ}(\rho))))=0\}
$$

Then we call the game $\mathcal{G}=(\mathcal{A}$, wparity $(\Omega))$ a weak parity game with color function Ω.
a) Give a polynomial time algorithm that computes the winning regions and uniform positional winning strategies for both players for a weak parity game \mathcal{G}.
b) Consider the game $\mathcal{G}=(\mathcal{A}, \operatorname{wparity}(\Omega))$ where \mathcal{A} and Ω are defined as in Exercise 4.1. Determine the winning regions and uniform positional winning strategies of both players using your algorithm given in a).

Exercise 4.3-Solitary Parity

A game $\mathcal{G}=(\mathcal{A}, \mathrm{Win})$ with $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ is called a solitary game for Player i if all vertices owned by Player $1-i$ have exactly one outgoing edge. Formally:

$$
\forall v \in V_{1-i} .|\{v\} \times V \cap E|=1
$$

Accordingly, the game is only played by Player i since Player $1-i$ never has a choice. Prove that solitary parity games can be solved in polynomial time in the number of edges of the arena.

Exercise 4.4 - Challenge

(2 Bonus Points)
A game $\mathcal{G}=\left(\mathcal{A}\right.$, Win) with $\mathcal{A}=\left(V, V_{0}, V_{1}, E\right)$ is called undirected iff $\forall\left(v, v^{\prime}\right) \in E .\left(v^{\prime}, v\right) \in E$. Prove that undirected parity games can be solved in polynomial time in the number of edges of the arena.

