Deadline: 5 Nov. 2013

Exercise 3.1 - Attractor

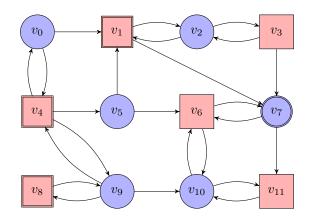
(1+1+2+2)

(3 + 1)

Let $\mathcal{A} = (V, V_0, V_1, E)$ be an arena and $R, R' \subseteq V$. Prove or disprove each of the following statements:

- a) $\operatorname{CPre}_0(R) = V \setminus \operatorname{CPre}_1(V \setminus R)$
- b) $R' \subseteq R \Rightarrow \operatorname{Attr}_0(R') \subseteq \operatorname{Attr}_0(R)$
- c) $\operatorname{Attr}_0(R \cap R') = \operatorname{Attr}_0(R) \cap \operatorname{Attr}_0(R')$
- d) $\operatorname{Attr}_0(R \cup R') = \operatorname{Attr}_0(R) \cup \operatorname{Attr}_0(R')$

Exercise 3.2 - Büchi



Consider the Büchi game $\mathcal{G} = (\mathcal{A}, \text{BÜCHI}(F))$ depicted above. Compute the winning region and a corresponding uniform positional winning strategy for each Player *i*.

Exercise 3.3 - Traps

(1+1+1+2)

A winning condition Win $\subseteq V^{\omega}$ is prefix-independent, if we have for every $\rho \in V^{\omega}$ and every $w \in V^*$:

 $\rho \in$ Win if and only if $w \rho \in$ Win.

A set $T \subseteq V$ of vertices is a trap for Player *i* if all outgoing edges of the vertices in $V_i \cap T$ lead to *T* and at least one successor of every vertex in $V_{1-i} \cap T$ is in *T*.

- a) Show: $V \setminus \text{Attr}_i(R)$ is a trap for Player *i* for every set *R*
- b) Prove or disprove: REACH(R) is prefix-independent
- c) Prove or disprove: BÜCHI(F) is prefix-independent
- d) Let $\mathcal{G} = (\mathcal{A}, \text{Win})$. Show: if Win is prefix-independent, then $W_0(\mathcal{G})$ and $W_1(\mathcal{G})$ are traps for Player 1 and Player 0, respectively

Exercise 3.4 - Challenge

(2 Bonus Points)

In this exercise we want to consider games of incomplete information. Therefore, note the following game definition.

Definition E3.4.1. A reachability game \mathcal{G} with incomplete information is a tuple (V, A, O, δ, o, R) consisting of

- a finite set V of vertices,
- a finite set A of actions,
- a finite set O of observations,
- a (non-deterministic) transition function $\delta: V \times A \to 2^V \setminus \{\emptyset\},\$
- an observation function $o: V \to O$ and
- a set $R \subseteq O$.

A play is an infinite alternating sequence $v_0 \alpha_0 v_1 \alpha_1 \dots$ of vertices and actions such that $v_{n+1} \in \delta(v_n, \alpha_n)$ for all $n \in \mathbb{N}$. The play is winning for Player 0, if there is an n such that $v_n \in R$.

A (pure) strategy for Player 0 is a mapping $\sigma : O^+ \to A$ while a (pure) strategy for Player 1 is a mapping $\tau : V^+ \times A \to V$ satisfying $\tau(wv, \alpha) \in \delta(v, \alpha)$ for every $wv \in V^+$ and every $\alpha \in A$. The play $v_0\alpha_0v_1\alpha_1...$ is consistent with σ , if $\alpha_n = \sigma(o(v_0)...o(v_n))$ for every n. It is consistent with τ , if $v_{n+1} = \tau(v_0...v_n, \alpha_n)$. So, intuitively, Player 0 picks an action based on the observations seen so far, while Player 1 resolves the non-determinism of the transition function. Note that Player 1 is fully informed. The strategy σ is a winning strategy for Player 0 from a vertex v, if every play that starts in v and is consistent with σ is winning for Player 0.

Show that the following problem is decidable:

Given a reachability game $\mathcal{G} = (V, A, O, \delta, o, R)$ with incomplete information and a vertex $v \in V$. Does there exist a pure winning strategy for Player 0 from v?

(Note: Both players are aware that the play starts in v.)