Exercise 2.1 - Reachability

(1 + 2)

Consider the reachability game $\mathcal{G} = (\mathcal{A}, \text{REACH}(R))$ depicted above.

a) Determine the attractor sets $\operatorname{Attr}_{0}^{n}(R)$ for all $n \in \mathbb{N}$. Therefore mark the corresponding vertices in the copies below and indicate which $\operatorname{Attr}_{0}^{n}(R)$ you have calculated.

b) Give the uniform winning strategies for both players resulting from the attractor construction. Argue how you constructed them.

Exercise 2.2 - Reachability

- a) Prove Remark 2.3 in the lecture notes by providing a corresponding algorithm. The algorithm gets as input a reachability game \mathcal{G} , represented by an arena \mathcal{A} and a reachability set R (with sets represented as lists), and outputs the attractor of R. Argue why your algorithm has the desired time complexity.
- b) Complete the proof of Theorem 2.1 in the lecture notes. Therefore show that you also can compute the corresponding winning strategies for both players in the desired time.

Exercise 2.3 - Safety

Consider the safety game $\mathcal{G} = (\mathcal{A}, \text{SAFE}(S))$ depicted above.

- a) Solve the game by transforming it into an equivalent reachability game first, solving the reachability game and transforming back the results to the actual safety game.
- b) Prove Lemma 2.2 and Corollary 2.1 in the lecture notes.

Exercise 2.4 - Challenge

(2 Bonus Points)

Consider the definition of a challenging reachability game given below.

Definition E2.4.1. Let the challenging reachability condition $CHREACH(\mathcal{R})$ on a set of sets $\mathcal{R} \subseteq 2^V$ for an arena $\mathcal{A} = (V, V_0, V_1, E)$ be defined as:

CHREACH(\mathcal{R}) = { $\rho \in \text{Plays}(\mathcal{A}) \mid \forall R \in \mathcal{R}. \text{ Occ}(\rho) \cap R \neq \emptyset$ }

Then we call the game $\mathcal{G} = (\mathcal{A}, CHREACH(\mathcal{R}))$ a *challenging reachability game* with challenging reachability set \mathcal{R} .

Prove that solving challenging reachability games is PSPACE hard. The size of a challenging reachability game $\mathcal{G} = (\mathcal{A}, CHREACH(\mathcal{R}))$ is defined to be $|\mathcal{A}| + |\mathcal{R}|$.

(2 + 2)